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Entropy production and time asymmetry in the presence of strong interactions
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It is known that the equilibrium properties of open classical systems that are strongly coupled to a heat bath are
described by a set of thermodynamic potentials related to the system’s Hamiltonian of mean force. By adapting
this framework to a more general class of nonequilibrium states, we show that the equilibrium properties of
the bath can be well defined, even when the system is arbitrarily far from equilibrium and correlated with the
bath. These states, which retain a notion of temperature, take the form of conditional equilibrium distributions.
For out-of-equilibrium processes we show that the average entropy production quantifies the extent to which
the system and bath state is driven away from the conditional equilibrium distribution. In addition, we show
that the stochastic entropy production satisfies a generalized Crooks relation and can be used to quantify time
asymmetry of correlated nonequilibrium processes. These results naturally extend the familiar properties of
entropy production in weakly coupled systems to the strong coupling regime. Experimental measurements of
the entropy production at strong coupling could be pursued using optomechanics or trapped-ion systems, which
allow strong coupling to be engineered.
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I. INTRODUCTION

The central goal of stochastic thermodynamics is to provide
a microscopic description of entropy production at the level
of the individual trajectories traced out by the system as it
is driven away from equilibrium [1–4]. Current technology
now provides us with increased control over mechanically
manipulated biomolecules and nanosystems, with examples
including single molecule RNA unfolding experiments [5], the
manipulation of light-levitated nanospheres [6], and control
over trapped-ion systems [7]. As the system size is scaled
down, microscopic fluctuations in entropy become appreciable
and must be understood in order to optimize the thermody-
namic performance of machines and devices operating at the
nanoscale [8]. On a more fundamental level entropy production
provides us with a quantitative description of change and
irreversibility in nature, and its average increase places
restrictions on allowed state transformations in accordance
with the second law of thermodynamics [9,10]. More refined
statements about the nature of entropy production are given
by the fluctuation theorems [2,11–15], and provide universal
insight into the breaking of time-reversal symmetry in a wide
variety of physical systems [5,16–19].

Standard analysis of entropy production in open systems,
both quantum and classical, centers on an assumption that the
system weakly interacts with a thermal bath [4,20–22]. The
benefit of this assumption is that it provides an unambiguous
notion of stochastic heat, since neglecting energetic contribu-
tions from the interaction provides a clear division between the
energy of the system and the bath. While the weak coupling
assumption can be physically justified in macroscopic systems,
the thermodynamic behavior of small-scale systems may be
strongly influenced by a non-negligible interaction with their
environment [23]. Thus it is of paramount importance to
explore extended notions of entropy production within the
strong coupling regime, which will be the subject of this paper.
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The extension of thermodynamics to the strong coupling
regime has been the subject of recent debate in the context of
both classical [8,23–26] and quantum systems [27–33]. The
central question revolves around the identification of thermo-
dynamic potentials for the system at both the stochastic and
ensemble level. An elegant solution to this problem, originally
dating back to Kirkwood in 1935 [34], is to replace the isolated
Hamiltonian of the system with an effective Hamiltonian
that takes into account the non-negligible interaction and
temperature of the environment. This allows one to define
an effective internal energy, free energy, and entropy for the
system at equilibrium [24].

Recent efforts have extended the applicability of this
formalism to stochastic, nonequilibrium thermodynamics
[23,25,26]. In particular, Seifert has proposed a definition of
stochastic entropy production derived from a set of fluctuat-
ing thermodynamic potentials associated with the system’s
Hamiltonian of mean force [26]. In this paper we lend
support to this approach by deriving an exact expression
for the average entropy production in general nonequilibrium
processes valid at arbitrary interaction strengths. Importantly it
is shown that our expression converges to previously derived
formulas in the limit of weak coupling [29,35]. In order to
consider the thermodynamics of systems operating away from
equilibrium, we introduce a class Dβ of system and bath
configurations in which the equilibrium properties of the bath
are retained even if correlated with an arbitrary state of the
system that is out of equilibrium. The entropy production
is shown to increase as a result of the system and bath
being driven away from configurations in Dβ . Furthermore,
it is shown that the full statistics of stochastic entropy
production obey a generalized Crooks-like fluctuation relation
[11], which provides a relationship between the time asym-
metry of nonequilibrium dynamics and the average entropy
production.

We begin by considering an open classical system coupled
to a heat bath with a time-dependent Hamiltonian

H (zt ; λt ) = Hs(xt ; λt ) + Hb(yt ) + Vint(zt ), (1)
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where λt is a time-dependent control parameter attributed to
the system Hamiltonian alone, Vint(zt ) governs the interaction
between system and bath, and zt = (xt ,yt ) describes a point in
the collective phase space at time t , with x and y labeling the
system and bath degrees of freedom, respectively. Let us first
consider the equilibrium thermodynamics of the total system
and assume a canonical distribution at inverse temperature β:

ρeq(zt ; t) = e−βH (zt ;λt )

Z(λt )
, (2)

where Z(λt ) = ∫
dzt e−βH (zt ;λt ) is the partition function of

the total system and bath. In standard thermodynamics one
assumes that the interaction strength is sufficiently weak,
βVint(zt ) � 1, such that the total canonical state factorizes
into two uncorrelated canonical distributions for the system
and bath, respectively. In this case additive thermodynamic
potentials can be assigned to both system and bath via their
local equilibrium distributions.

However, when Vint(zt ) is non-negligible it is not immedi-
ately clear how to assign a set of thermodynamic potentials to
the system. A way to solve this problem is to introduce the
Hamiltonian of mean force [23–27,32,34,36,37],

H̃s(xt ; λt ) := Hs(xt ; λt ) − 1

β
ln 〈e−βVint(zt )〉eq

b , (3)

which acts as an effective Hamiltonian for the system that
takes into account the non-negligible interaction term. Here
〈f (zt )〉eq

b = ∫
dyt f (zt ) e−β(Hb(yt )−F

eq
b ) denotes an average of

arbitrary function f (zt ) with respect to an isolated bath,
and F

eq
b is the corresponding equilibrium free energy of the

isolated bath. By averaging over the bath degrees of freedom
in the canonical distribution (2), the system distribution can
be expressed in an effective equilibrium state with respect to
H̃s(xt ; λt ):

ρ̃eq
s (xt ; t) = e−βH̃s (xt ;λt )

Z̃s(λt )
, Z̃s(λt ) =

∫
dxt e−βH̃s (xt ;λt ). (4)

As was shown in [24], the partition function Z̃s(λt ) can be
used to obtain a set of thermodynamic potentials for the system
through the standard formulas for free energy, internal energy,
and entropy:

F̃ eq
s (λt ) = − 1

β
ln Z̃s(λt ),

Ũ eq
s (λt ) = −∂β ln Z̃s(λt ), (5)

S̃eq
s (λt ) = β

[
Ũ eq

s (λt ) − F̃ eq
s (λt )

]
.

It is well known that these thermodynamic potentials are
additive with respect to the bare environment [24,27,32]. For
example, the total thermodynamic entropy of the system and
bath can be split into S

eq
tot(λt ) = S̃

eq
s (λt ) + S

eq
b , where S

eq
b is

the entropy of the isolated canonical bath. The same additivity
holds for the internal energy and free energy, implying that the
presence of the interaction leaves the equilibrium properties
of the bath unchanged. Instead, the influence of the interaction
is attributed to the equilibrium properties of the system alone
[38].

II. NONEQUILIBRIUM POTENTIALS

While the thermodynamic potentials in Eq. (5) are well
defined at equilibrium, recent efforts have attempted to extend
the definitions of Eq. (5) to the case where the system is no
longer in an effective equilibrium state [23,25,26]. This can
be achieved by first noting that the equilibrium internal energy
can be expressed as Ũ

eq
s (λt ) = 〈∂β[βH̃s(xt ; λt )]〉eq

s where 〈..〉eq
s

denotes an average with respect to the effective equilibrium
state (4). Similarly one finds S̃

eq
s (λt ) = −〈ln ρ̃

eq
s (xt ; t)〉eq

s +
β2〈∂βH̃s(xt ; λt )〉eq

s . These quantities can be interpreted as
equilibrium averages over a set of fluctuating thermodynamic
potentials appearing inside the brackets 〈..〉eq

s . We propose that
the fluctuating potentials for internal energy, entropy, and free
energy for states arbitrarily far from equilibrium are given,
respectively, by [23,25,26]

ũs(xt ; λt ) := ∂β[βH̃s(xt ; λt )],

s̃s(xt ; λt ) := −ln ρs(xt ; t) + β2∂βH̃s(xt ; λt ), (6)

f̃s(xt ; λt ) := ũs(xt ; λt ) − β−1s̃s(xt ; λt ).

These functions account for the temperature dependence of
the mean force Hamiltonian, give the averages (5), and
reduce to the standard thermodynamic potentials used in
stochastic thermodynamics in the limit of weak coupling [4].
We will show that these generalized fluctuating potentials can
be connected into a consistent thermodynamic framework.
The average nonequilibrium internal energy will be denoted
by Ũs(λt ; t) = 〈ũs(xt ; λt )〉s , with 〈..〉s = ∫

dxt ρs(xt ; t)(..)
now an average with respect to a general nonequilibrium
state of the system. Similarly the average entropy will be
denoted by S̃s(λt ; t) = 〈s̃s(xt ; λt )〉s and average free energy
by F̃s(λt ; t) = 〈f̃s(xt ; λt )〉s . From Eq. (6) one sees that the
nonequilibrium entropy at strong coupling involves a contri-
bution from the Gibbs-Shannon entropy alongside a second
term β2〈∂βH̃s(xt ; λt )〉s that has previously been identified as
an intrinsic entropy in the context of small-scale molecular
motors [8].

It is not obvious that these potentials should generally
be additive for a given system and bath distribution, unlike
the equilibrium counterparts (5). However, let us consider a
particular class σ (zt ; t) ∈ Dβ of distributions defined by

σ (zt ; t) = ρs(xt ; t)ρ
eq
b (yt |xt ), (7)

where we place no restriction on the system configuration
and

ρ
eq
b (yt |xt ) = ρeq(zt ; λt )∫

dytρeq(zt ; λt )
(8)

is the equilibrium conditional probability for bath microstate
yt given a particular microstate of the system xt , obtained
through application of Bayes’s theorem. Because the system
Hamiltonian cancels in the fraction in Eq. (7) the dependence
on the control parameter λt cancels in the expression for
ρ

eq
b (yt |xt ). The class of states Dβ has previously been intro-

duced in [25] and referred to as the stationary preparation
class, which describes a conditional equilibrium state on the
bath. In this case for any microstate selected from the system
the resulting conditional statistics of the bath are equivalent
to that of the total canonical state (2). For this class of states
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one still has a well-defined notion of temperature attributed
to a thermal environment. This is manifested by a generalized
additive relationship between the thermodynamic potentials,
which we prove in Appendix A. Taking the state σ (zt ; t) ∈
Dβ , let us denote Utot(λt ; t) = 〈H (zt ; λt )〉 as the internal
energy of σ (zt ; t), Stot(λt ; t) = −〈ln σ (zt ; t)〉 as the Gibbs-
Shannon entropy, and Ftot(λt ; t) = Utot(λt ; t) − β−1Stot(λt ; t)
as the free energy. Then the following additive property
holds:

χtot(λt ; t) = χ̃s(λt ; t) + χ
eq
b , (9)

where χ ∈ {F,S,U}. Here the thermodynamic potentials
χ

eq
b ∈ {F eq

b ,S
eq
b ,U

eq
b } are equivalent to those of an isolated

canonical bath, and can be obtained by substituting the bath
partition function Zb into the equations given in Eq. (5), where

Zb =
∫

dyt e−βHb(yt ). (10)

The relation (9) implies that the equilibrium properties of the
bath remain unchanged relative to the arbitrary state of the
system, even in the presence of correlations due to strong
interaction. In other words, while the bath marginal of σ (zt ; t)
is not a canonical distribution, the effect of the interaction on
the bath potentials is negligible. This is physically intuitive
considering that the bath is macroscopic relative to the
microscopic size of the system.

Ultimately the additivity of thermodynamics potentials
(5) for the class Dβ will allow us to maintain a notion of
temperature for states driven away from equilibrium, and will
allow us to derive the second law of thermodynamics in this
framework.

III. ENTROPY PRODUCTION

We will now consider a general nonequilibrium (NEQ)
process operating at an arbitrarily large coupling strength and
derive an exact expression for the entropy production. The
NEQ process is realized over a time interval [t0,t] by varying
the Hamiltonian through a parameter change λt with initial
and final settings denoted by λ0 and λt , respectively. We make
two assumptions about this process.

(i) At initial time t0 the system and bath is in a conditional
equilibrium state σ (z0; t0) ∈ Dβ , with ρs(x0; t0) specifying an
initial arbitrary state for the system.

(ii) The total system and bath undergoes closed evolution
during the time interval [t0,t] governed by Liouville’s equation

∂tρ(zt ; t) = L[ρ(zt ; t)], (11)

where L[(..)] is the corresponding Liouvillian resulting from
the change in the Hamiltonian (1) over time. The resulting final
state is specified by ρ(zt ; t) with final system configuration
ρs(xt ; t) = ∫

dyt ρ(zt ; t).
Assumption (i) is necessary in order to have a well-defined

notion of both temperature and the Hamiltonian of mean force
(3) prior to the NEQ process. Assumption (ii) ensures that
we account for all exchanges of heat and work between the
system and the bath. No restrictions are imposed on the final
configuration of the system, and we denote the transformation
by ρs(x0; t0) → ρs(xt ; t). Following the approaches taken in
[23,25,26] we can use the fluctuating potentials in Eq. (6) to

define the fluctuating heat dissipated from the system into the
bath up to time t as

Q̃(zt ; t) : = ũs(x0; λ0) − ũs(xt ; λt ) +
∫ t

t0

dτ ∂τ ũs(xτ ; λτ ),

(12)

which represents the sum of work done during the process and
the decrease in internal energy of the system, in accordance
with the first law of thermodynamics. Note that Q̃(zt ; t) =
Q̃(zt [z0]; t) is implicitly written as a function of the initial
phase space point z0 because the evolution of point xt depends
on the deterministic evolution of the collective phase space
for the system and bath, denoted by the transformation
z0 → zt [z0]. However, the right-hand side of Eq. (12) indicates
that the heat can be determined by monitoring the system
degrees of freedom alone along a specific trajectory. If we
take into account the full evolution of the system and bath, it
is straightforward to show that the average dissipated heat is
given by

〈Q̃(t)〉 = Utot(λt ; t) − Ũs(λt ; t) − U
eq
b , (13)

which follows from Eq. (9) combined with initial condition (i),
along with the fact that the integral in Eq. (12) is equivalent
to the difference in total energy, H (zt ; λt ) − H (z0; λ0). This
heat is nonzero because, unlike the initial state, the final state
will not generally belong to the class Dβ and so the additive
relation (9) will not hold for the final state in general. As
noted by Seifert, one can introduce a definition of fluctuating
entropy production as the sum of dissipated heat and change
in the fluctuating entropy of the system [26]:

	(zt ; t) := s̃s(xt ; λt ) − s̃s(x0; λ0) + βQ̃(zt ; t). (14)

For the definition (14) to be a physically relevant candidate for
entropy production then it should not be negative on average,
in accordance with the second law of thermodynamics. This
brings us to the first main result of the paper.

IV. MAIN RESULT

Assuming the total system and bath undergoes the NEQ
process specified by assumptions (i) and (ii), then the average
entropy production up to time t is given by

〈	(t)〉 = D[ρ(zt ; t)||σ (zt ; t)], (15)

where

D[ρ(zt ; t)||σ (zt ; t)] =
∫

dztρ(zt ; t) ln

[
ρ(zt ; t)

σ (zt ; t)

]

is the Kullback-Leibler divergence between the final system
and bath configuration and the corresponding conditional
equilibrium state σ (zt ; t) = ρs(xt ; t)ρ

eq
b (yt |xt ) ∈ Dβ . This is

the central result of the paper and the proof of Eq. (15) is
provided in Appendix B. We note that this result has also been
obtained independently in [39]. By Eq. (15) and the positivity
of the Kullback-Leibler divergence, one has 〈	(t)〉 � 0 as
desired. From the definition of entropy production in Eq. (14)
one obtains a form of the Clausius inequality valid for arbitrary
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FIG. 1. Schematic representation of the equality (15). The solid
line represents the actual process given by the evolving distribution
ρ(t) = ρ(zt ; t) whilst the dashed line represents a hypothetical
quasistatic process in which the system and bath distribution stays
in the conditional equilibrium state σ (t) = σ (zt ; t) ∈ Dβ . The non-
negative entropy production then quantifies the extent to which the
system and bath are driven away from σ (t), represented here as the
distance of the blue line.

coupling strengths which becomes

β〈Q̃(t)〉 � S̃s(λ0; t0) − S̃s(λt ; t). (16)

Perhaps surprisingly, the Clausius inequality derived here
within the strong coupling regime suggests that the change in
Gibbs-Shannon entropy is generally insufficient to bound the
minimum heat dissipated into the bath during a nonequilibrium
process.

According to Stein’s lemma [40], the divergence appearing
in Eq. (15) can be interpreted as a measure of distinguisha-
bility between the final distribution and the corresponding
conditional equilibrium state σ (zt ; t) ∈ Dβ . Thus the further
the final state is driven away from the uniquely defined
σ (zt ; t) ∈ Dβ , the greater the amount of entropy production
after the process. If the dynamics governed by Eq. (11) are such
that the total system and bath remains in the corresponding
conditional equilibrium state in Dβ , the bound in Eq. (16) can
be saturated at any given time t . However, in this situation the
dissipated heat and entropy change are simultaneously zero;
β〈Q̃(t)〉 = 
S̃s = 0. The expression (15) can be interpreted as
a generalization of a phenomenon known as lag encountered
in closed and weakly coupled thermodynamic systems [41].
The entropy production quantifies the extent to which the
configuration of the system and bath lags behind a hypothetical
quasistatic process in which the configuration remains in the
evolving conditional equilibrium state, σ (zt ; t) ∈ Dβ . Figure 1
illustrates this effect.

Result (15) is consistent with previously derived ex-
pressions for average entropy production when the weak
coupling limit is taken. If one assumes βVint(zt ) � 1 then
the Hamiltonian of mean force (3) reduces to the system
Hamiltonian Hs(xt ; λt ) independent of temperature. As ex-
pected the heat becomes 〈Q̃(t)〉 ≈ 〈Hb(t)〉 − 〈Hb(t0)〉, where
〈Hb(t)〉 is the average energy of the isolated bath Hamiltonian
evaluated with respect to the configuration of the bath
at time t . Secondly, this also means the entropy change
reduces to the change in Gibbs-Shannon entropy S̃s(λt ; t) ≈
Ss(t) = − ∫

dxtρs(xt ; t)ln ρs(xt ; t). Finally, it can also be
seen that the conditional equilibrium state σ (zt ; t) ∈ Dβ

reduces to a system state uncorrelated with the isolated
canonical bath; σ (zt ; t) ≈ ρs(xt ; t)ρ

eq
b (yt ). By comparison

with Eq. (15), we obtain the same equality derived in [29,35],

which is

〈	(t)〉 ≈ Ss(t) − Ss(t0) + β〈Hb(t)〉 − β〈Hb(t0)〉
= D

[
ρ(zt ; t)||ρs(xt ; t)ρ

eq
b (yt )

]
. (17)

where ρ
eq
b (yt ) = e−β[Hb(yt )−F

eq
b ]. It should be noted that Eq. (17)

was originally derived for quantum systems in [29,35], though
in the weak coupling regime the result is entirely statistical
mechanical in nature and continues to hold in classical
systems.

V. FLUCTUATION THEOREM

We have demonstrated that the average entropy production
〈	(t)〉 quantifies the extent to which the total system and
bath is driven away from states in Dβ . This suggests that
the fluctuations in 	(zt ; t) can be used to quantify time
asymmetry in the dynamics of strongly coupled systems.
In both weakly coupled and closed systems, fluctuation
relations can be used to indicate a breaking of time-reversal
symmetry by comparing the statistics of positive entropy
production for a forward trajectory versus negative entropy
production along the corresponding time-reversed trajectory
[11,13,14,16,17,42]. We will now show that the entropy
production satisfies a Crooks-like fluctuation relation. Let us
again suppose that we drive a system and bath configuration
σ (z0; t0) ∈ Dβ away fromDβ by varying the control parameter
λ0 → λt , and denote the initial and final configurations of the
system by ρs(x0; t0) and ρs(xt ; t), respectively. The stochastic
entropy production 	(zt ; t) along a particular phase space
trajectory fluctuates according to the sampling of the initial
phase space point, and the resulting probability of occurrence
can be written as follows:

−→
P (+	) =

∫
dz0 σ (z0; t0) δ[	 − 	(zt ; t)], (18)

where the superscript indicates that the process moves for-
wards in time. To compare this with the time-reversed entropy
production we need to make additional assumptions. First, we
require the total Hamiltonian to be time-reversal symmetric,
H (zt ; λt ) = H (z∗

t ; λt ), where z∗
t indicates a conjugated phase

space point in which momentum is reversed. Secondly, the
initial and final configurations of the system are assumed
to be time reversal symmetric; ρs(x0; t0) = ρs(x∗

0 ; t0) and
ρs(xt ; t) = ρs(x∗

t ; t). By comparison with Eqs. (12) and (14)
it is straightforward to see that these conditions imply
	(zt ; t) = −	(z∗

t ; t). For the time-reversed process, the initial
configuration is given by σ (z∗

t ; t) = ρs(x∗
t ; t)ρeq

b (y∗
t |x∗

t ) ∈ Dβ

and the control parameter is varied from λt → λ0. As with
Eq. (18), entropy production along the reverse process has a
corresponding probability of occurrence denoted by

←−
P (−	).

As is proven in Appendix C, these probabilities are related
by a fluctuation relation, which becomes our second main
result:

−→
P (+	)
←−
P (−	)

= e+	, (19)

implying that a positive entropy production along the forward
trajectory is exponentially favored against its time reverse.
Taking the logarithm of both sides and performing an average
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over
−→
P (+	) yields an alternative expression for the average

entropy production:

〈	(t)〉 = D[
−→
P (+	)||←−P (−	)]. (20)

Following Stein’s lemma again, we see that the average en-
tropy production also quantifies the distinguishability between
statistics of the forward and reverse nonequilibrium processes,
respectively. By comparison with Eq. (15), if the dynamics are
such that the system and bath remain in their corresponding
configuration in Dβ then the left-hand side of Eq. (20) reduces
to zero, implying the dynamics are completely symmetric in
time as expected [16,41]. This solidifies our interpretation
of the entropy production (14) as a measure of time asym-
metry and irreversibility generalized to the strong coupling
regime.

VI. CONCLUSION

In this paper we have shown that the entropy production
in a system strongly interacting with a bath demonstrates
a positive increase in accordance with the second law of
thermodynamics. In particular, we proved that entropy is
produced when the system and bath are driven away from the
conditional equilibrium distribution inDβ . As we have argued,
the stochastic entropy production (14) is accessible through
monitoring the system’s path in phase space, implying that
in principle a verification of our results (15) and (19) should
be accessible using standard experimental techniques [5,43].
Our results provide important modifications to Landauer’s
principle [35] in the presence of strong coupling, as the change
in Shannon entropy is insufficient to characterize the minimum
heat dissipated into the bath as the result of information
erasure, as shown in the generalized Clausius inequality (16).
Apparent violations of Landauer’s principle resulting from
correlations between the system and bath in the strong coupling
regime [30,44] are naturally resolved by this modification.

Note added. After completion of this paper we became
aware of similar results obtained by Strasberg and Esposito in
[39].
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APPENDIX A: PROOF OF EQ. (9)

In this section we prove that for any conditional equilibrium
distribution ρ(zt ; t) = ρs(xt ; t)ρ

eq
b (yt |xt ) ∈ Dβ , the nonequi-

librium potentials (6) satisfy the additive property χtot(λt ; t) =
χ̃s(λt ; t) + χ

eq
b . To express ρ(zt ; t) in a more useful form we

use the following identity [25]:

ρ
eq
b (yt |xt ) = ρeq(zt ; λt )∫

dytρeq(zt ; λt )

= e−β[Hb(yt )+Vint(zt )]∫
dyt e−β[Hb(yt )+Vint(zt )]

. (A1)

We now note that the nonequilibrium internal energy is
given by Ũs(λt ; t) = 〈∂β[βH̃s(xt ; λt )]〉s . To proceed we ex-
pand the fluctuating internal energy function ũs(xt ; λt ) =
∂β[βH̃s(xt ; λt )]:

ũs(xt ; λt ) = ∂β[βH̃s(xt ; λt )]

= Hs(xt ; λt ) − ∂β〈e−βVint(zt )〉eq
b

〈e−βVint(zt )〉eq
b

= Hs(xt ; λt )

+
∫

dyt e−β[Hb(yt )+Vint(zt )][Hb(yt ) + Vint(zt )]∫
dyt e−β[Hb(yt )+Vint(zt )]

+ ∂β

[
e−βF

eq
b

]

= Hs(xt ; λt ) +
∫

dyt ρ
eq
b (yt |xt ; λt )[Hb(yt )

+Vint(zt )] − U
eq
b . (A2)

Averaging both sides of Eq. (A2) with respect to ρs(xt ; t)
gives

Ũs(λt ; t) =
∫

dzt ρs(xt ; t)ρ
eq
b (yt |xt )[Hs(xt ; λt )

+Hb(yt ) + Vint(zt )] − U
eq
b

= Utot(λt ; t) − U
eq
b . (A3)

Turning now to the entropy, we need to evaluate the Gibbs-
Shannon entropy of the state ρ(zt ; t) ∈ Dβ . This can be done
from the following equivalent identity:

ρ
eq
b (yt |xt ; λt ) = e−β[H (zt ;λt )−H̃s (xt ;λt )−F

eq
b ]. (A4)

Using this we can show the following:

Stot(λt ; t) = −
∫

dzt ρs(xt ; t)ρ
eq
b (yt |xt )d

× [
ln ρs(xt ; t) + ln ρ

eq
b (yt |xt )

]

= Ss(λt ; t) − βF
eq
b + β

∫
dzt ρs(xt ; t)ρ

eq
b (yt |xt )

× [H (zt ; λt ) − H̃s(xt ; λt )]

= Ss(λt ; t) − β
(
Utot(λt ; t) − U

eq
b

) + S
eq
b

−β

∫
dxt ρs(xt ; t)H̃s(xt ; λt )

= Ss(λt ; t) + βŨs(λt ; t) − β〈H̃s(xt ; λt )〉s + S
eq
b

= S̃s(λt ; t) + S
eq
b , (A5)
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where we used Utot(λt ; t) − U
eq
b = Ũs(λt ; t) and β2〈∂βH̃s

(xt ; λt )〉s = βŨs(λt ; t) − β〈H̃s(xt ; λt )〉s . Finally, the last ad-
ditive relation

Ftot(λt ; t) = F̃s(λt ; t) + F
eq
b (A6)

follows trivially from Eqs. (A2) and (A5) together with the
definition of fluctuating free energy, f̃s(xt ; λt ) = ũs(xt ; λt ) −
β−1s̃s(xt ; λt ). This concludes the proof of Eq. (9).

APPENDIX B: PROOF OF EQ. (15)

We begin by expressing the decrease in nonequilibrium
entropy for the NEQ process specified by assumptions (i) and
(ii) in the main text as follows:


S̃s = S̃s(λ0; t0) − S̃s(λt ; t)

= Stot(λ0; t0) − S
eq
b − S̃s(λt ; t)

= Stot(λt ; t) − S
eq
b − Ss(λt ; t) − β2

〈
∂βH̃s(xt ; λt )

〉
s

= Stot(λt ; t) − S
eq
b − Ss(λt ; t) − βŨs(λt ; t)

+β〈H̃s(xt ; λt )〉s , (B1)

where we recall Ss(t) = ∫
dxtρs(xt ; t)ln ρs(xt ; t) represents

the Gibbs-Shannon entropy of the system. In the second line we
applied the additivity of the nonequilibrium entropy, according
to Eq. (9). This is ensured by our choice of initial conditions
given by assumption (i). In the third line we used the fact that
the Gibbs-Shannon entropy is invariant under closed evolution
given by Eq. (11) [17]. The remaining steps follow from the
definitions of S̃s(λt ; t) and Ũs(λt ; t).

Now we introduce the Kullback-Leibler (KL) di-
vergence D[ρ(zt ; t)||σ (zt ; t)] defined in Eq. (15). Us-
ing σ (zt ; t) = ρs(xt ; t)ρ

eq
b (yt |xt ) according to Eq. (A4),

the KL divergence can be evaluated as follows:
D[ρ(zt ; t)||σ (zt ; t)]

=
∫

dzf ρ(zt ; t) ln

[
ρ(zt ; t)

σ (zt ; t)

]

= −Stot(λt ; t) + Ss(λt ; t) −
∫

dzf ρ(zt ; t)ln ρ
eq
b (yt |xt )

= −Stot(λt ; t) + Ss(λt ; t) − βF
eq
b

+β〈H (zf ; λf )〉 − β〈H̃s(xf ; λf )〉s
= −
S̃s + β

[
Utot(λt ; t) − Ũs(λt ; t) − U

eq
b

]
, (B2)

where we used Eq. (B1) and F
eq
b = U

eq
b − β−1S

eq
b in the final

line. By using Ũs(λ0; t0) = Utot(λ0; t0) − U
eq
b from Eq. (9), it

is straightforward to see that the dissipated heat (13) takes the
form

〈Q̃(t)〉 = [Utot(λt ; t) − Ũs(λt ; t)] − [Utot(λ0; t0) − Ũs(λ0; t0)]

= Utot(λt ; t) − Ũs(λt ; t) − U
eq
b . (B3)

Finally, we combine Eqs. (B2) and (12) to arrive at

D[ρ(zt ; t)||σ (zt ; t)] = β〈Q̃(t)〉 − 
S̃s = 〈	(t)〉, (B4)

thus concluding the proof of Eq. (15).

APPENDIX C: PROOF OF EQ. (19)

To begin, first note that the fluctuating heat (13) can
be expressed in terms of the difference between the fluc-
tuating total energy and fluctuating internal energy of the
system:

Q̃(zt ; t) = [H (zt ; λt ) − ũs(xt ; λt )]

− [H (z0; λ0) − ũs(x0; λ0)]. (C1)

Recall that the initial state for the forward process is specified
by σ (z0; t0) = ρs(x0; t0)ρeq

b (y0|x0; λ0), whilst for the time-
reversed process the initial configuration is given by σ (z∗

t ; t) =
ρs(x∗

t ; t)ρeq
b (y∗

t |x∗
t ) ∈ Dβ . Using Eq. (A4) we expand the

following:

ln

[
σ (z0; t0)

σ (z∗
t ; t)

]
= ln

[
ρs(x0; t0)ρeq

b (y0|x0)

ρs(x∗
t ; t)ρeq

b (y∗
t |x∗

t )

]

= ln

[
ρs(x0; t0)

ρs(x∗
t ; t)

]
− β[H (z0; λ0) − H (z∗

t ; λt ) − H̃s(x0; λ0) + H̃s(x
∗
t ; λt )]

= ln

[
ρs(x0; t0)

ρs(xt ; t)

]
− β[H (z0; λ0) − H (zt ; λt ) − H̃s(x0; λ0) + H̃s(xt ; λt )]

= s̃s(xt ; λt ) − s̃s(x0; λ0) − β[H (z0; λ0) − H (zt ; λt ) − H̃s(x0; λ0) + H̃s(xt ; λt ) − β2∂βH̃s(x0; λ0) + β2∂βH̃s(xt ; λt )]

= s̃s(xt ; λt ) − s̃s(x0; λ0) + βQ̃(zt ; t), (C2)

where we used the time-reversal symmetry assumptions for H (zt ; λt ) and ρs(xt ; t) and in the final line applied the definition (14).
The above equality represents a detailed balanced relation that can be used to prove Eq. (19). We now evaluate the probability←−
P (−	):

←−
P (−	) =

∫
dz∗

t σ (z∗
t ; t) δ[	 + 	(z∗

t )] (C3)

=
∫

dz0

∣∣∣∣∂z∗
t

∂z0

∣∣∣∣
−1 [

σ (z∗
t ; t)

σ (z0; t0)

]
σ (z0; t0) δ[	 − 	(zt ; t)]
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=
∫

dz0 e−s̃s (xt ;λt )+s̃s (x0;λ0)−βQ̃(zt ;t) σ (z0; t0) δ[	 − 	(zt ; t)]

= e−	

∫
dz0 σ (z0; t0) δ[	 − 	(zt ; t)]

= e−	 −→
P (+	), (C4)

where in the second line we performed a change of variables
z∗
t → z0 along with 	(zt ; t) = −	(z∗

t ; t), in the third line
we used the fact that the Jacobian is equal to unity and

Eq. (C2), and in the fourth line we pulled the exponential
outside the integral due to the presence of the delta function.
This concludes the proof of Eq. (19).
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