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ABSTRACT
Quantum thermodynamics is an emerging research field aiming to extend standard thermodynamics
and non-equilibrium statistical physics to ensembles of sizes well below the thermodynamic limit, in
non-equilibrium situations and with the full inclusion of quantum effects. Fuelled by experimental
advances and the potential of future nanoscale applications, this research effort is pursued by
scientists with different backgrounds, including statistical physics, many-body theory, mesoscopic
physics and quantum information theory, who bring various tools and methods to the field. A
multitude of theoretical questions are being addressed ranging from issues of thermalisation of
quantum systems and various definitions of ‘work’ to the efficiency and power of quantum engines.
This overviewprovides aperspectiveona selectionof these current trends accessible topostgraduate
students and researchers alike.
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1. Introduction

One of the biggest puzzles in quantum theory today is to
show how the well-studied properties of a few particles
translate into a statistical theory from which new macro-
scopic quantum thermodynamic laws emerge. This
challenge is addressed by the emerging field of quan-
tum thermodynamics which has grown rapidly over the
last decade. It is fuelled by recent equilibration experi-
ments [1] in cold atomic and other physical systems, the
introduction of new numerical methods [2] and the dis-
covery of fundamental theoretical relationships in non-
equilibrium statistical physics and quantum information
theory [3–9].With ultrafast experimental control of qua-
ntum systems and engineering of small environments
pushing the limits of conventional thermodynamics, the
central goal of quantum thermodynamics is the exten-
sion of standard thermodynamics to include quantum
effects and small ensemble sizes. Apart from the academic
drive to clarify fundamental processes in nature, it is
expected that industrial need for miniaturisation of tech-
nologies to the nanoscale will benefit fromunderstanding
of quantum thermodynamic processes. Obtaining a deta-
iled knowledge of how quantum fluctuations compete
with thermal fluctuations is essential for us to be able to
adapt existing technologies to operate at ever-decreasing
scales, and to uncover new technologies thatmay harness
quantum thermodynamic features.

Various perspectives have emerged in quantum ther-
modynamics due to the interdisciplinary nature of the
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field, and each contributes different insights. For exam-
ple, the study of thermalisation has been approached
by quantum information theory from the standpoint of
typicality and entanglement, and by many-body physics
with a dynamical approach. Likewise, the recent study
of quantum thermal machines (QTMs), originally app-
roached from a quantum optics perspective [10–12], has
since received significant input frommany-body physics,
fluctuation relations and linear response approaches
[13,14]. These designs further contrast with studies on
thermal machines based on quantum information theo-
retic approaches [15–20]. The difference in perspectives
on the same topics has also meant that there are ideas
within quantum thermodynamics where consensus is yet
to be established.

This article is aimed at non-expert readers and special-
ists in one subject who seek a brief overview of quantum
thermodynamics. The scope is to give an introduction to
some of the different perspectives on current topics in a
single paper, and guide the reader to a selection of useful
references. Given the rapid progress in the field, there
are many aspects of quantum thermodynamics that are
not covered in this overview. Some topics have been inte-
nsely studied for several years and dedicated reviews are
available, for example, classical non-equilibrium thermo-
dynamics [21], fluctuation relations [22], non-asymptotic
quantum information theory [23], quantumengines [24],
equilibration and thermalisation [25,26] and a recent
quantum thermodynamics review focusing on quantum
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information theory techniques [27]. Other reviews of
interest discuss Maxwell’s demon and the physics of for-
getting [28–30] and thermodynamic aspects of informa-
tion [31]. We encourage researchers to take on board the
insights gained from different approaches and attempt to
fit together the pieces of the puzzle to create an overall
united framework of quantum thermodynamics.

Section 2 discusses the standard laws of thermody-
namics and introduces the link with information
processing tasks and Section 3 gives a brief overview of
fluctuation relations in the classical andquantumregimes.
Section 4 then introduces quantum dynamical maps and
discusses implications for the foundations of thermody-
namics. Properties of maps form the backbone of the
thermodynamic resource theory approach to single shot
thermodynamics discussed in Section 5. Section 6 dis-
cusses the operation of thermalmachines in the quantum
regime. Finally, in Section 7, the current state of the field
is summarised and open questions are identified.

2. Information and thermodynamics

This section defines averages of heat and work, intro-
duces the first and second laws of thermodynamics and
discusses examples of the link between thermodynamics
and information processing tasks, such as erasure.

2.1. The first and second laws of thermodynamics

Thermodynamics is concerned with energy and changes
of energy that are distinguished as heat and work. For
a quantum system in state ρ and with Hamiltonian H
at a given time, the system’s internal, or average, energy
is identified with the expectation value U(ρ) = tr[ρ H].
When a system changes in time, i.e. the pair of state and
Hamiltonian [32] vary in time (ρ(t),H(t))with t ∈ [0, τ ],
the resulting average energy change

#U = tr[ρ(τ ) H(τ )] − tr[ρ(0) H(0)] (1)

is made up of two types of energy transfer – work and
heat. Their intuitive meaning is that of two types of
energetic resources, one fully controllable and useful,
the other uncontrolled and wasteful [5,32–40]. Since the
time variation of H is controlled by an experimenter,
the energy change associated with this time variation
is identified as work. The uncontrolled energy change
associated with the reconfiguration of the system state
in response to Hamiltonian changes and the system’s
coupling with the environment are identified as heat. The
formal definitions of average heat absorbed by the system
and average work done on the system are then

⟨Q⟩ :=
∫ τ

0
tr[ρ̇(t) H(t)] dt and

⟨W⟩ :=
∫ τ

0
tr[ρ(t) Ḣ(t)] dt. (2)

Here, the brackets ⟨·⟩ indicate the ensemble average that
is assumed in the above definition when the trace is
performed. Work is extracted from the system when
⟨Wext⟩ := −⟨W⟩ > 0, while heat is dissipated to the
environment when ⟨Qdis⟩ := −⟨Q⟩ > 0.

The first law of thermodynamics states that the sum of
average heat and work done on the system just makes up
its average energy change,

⟨Q⟩ + ⟨W⟩ =
∫ τ

0

d
dt

tr[ρ(t) H(t)] dt

= tr[ρ(τ ) H(τ )] − tr[ρ(0) H(0)] = #U . (3)

It is important to note that while the internal energy
change only depends on the initial and final states and
Hamiltonians of the evolution, heat and work are pro-
cess dependent, i.e. it matters how the system evolved in
time from (ρ(0),H(0)) to (ρ(τ ),H(τ )). Therefore, heat and
work for an infinitesimal process which will be denoted
by ⟨δQ⟩ and ⟨δW⟩where the symbol δ indicates that heat
and work are (in general) not full differentials and do not
correspond to observables [41], in contrast to the average
energy with differential dU .

Choosing to split the energy change into two types
of energy transfer is crucial to allow the formulation
of the second law of thermodynamics. A fundamental
law of physics, it sets limits on the work extraction of
heat engines and establishes the notion of irreversibility
in physics. Clausius observed in 1865 that a new state
function – the thermodynamic entropy Sth of a system –
is helpful to study the heat flow to the system when it
interacts with baths at varying temperatures T [42]. The
thermodynamic entropy is defined through its change in
a reversible thermodynamic process,

#Sth :=
∫

rev

⟨δQ⟩
T

, (4)

where ⟨δQ⟩ is the heat absorbed by the system along the
process and T is the temperature at which the heat is
being exchanged between the system and the bath. Fur-
ther observing that any cyclic process obeys

∮ ⟨δQ⟩
T ≤ 0

with equality for reversible processes, Clausius formu-
lated a version of the second law of thermodynamics for all
thermodynamic processes, today known as the Clausius
inequality:
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∫ ⟨δQ⟩
T

≤ #Sth, becoming

⟨Q⟩ ≤ T #Sth for T = const. (5)

It states that the change in a system’s entropy must
be equal or larger than the average heat absorbed by
the system during a process divided by the temperature
at which the heat is exchanged. In this form, Clausius’
inequality establishes the existence of an upper bound
to the heat absorbed by the system and its validity is
generally assumed to extend to the quantum regime
[5,16,32–40]. Equivalently, by defining the free energy of
a system with Hamiltonian H and in contact with a heat
bath at temperature T as the state function

F(ρ) := U(ρ) − TSth(ρ), (6)

Clausius’ inequality becomes a statement of the upper
bound on the work that can be extracted in a thermody-
namic process,

⟨Wext⟩ = −⟨W⟩ = −#U + ⟨Q⟩
≤ −#U + T#Sth = −#F. (7)

While the actual heat absorbed/work extracted will dep-
end on the specifics of the process, there exist optimal,
thermodynamically reversible, processes that saturate the
equality, see Equation (4). However, modifications of
the second law, and thus the optimal work that can be
extracted, arise when the control of the working sys-
tem is restricted to physically realistic, local scenarios
[43]. For equilibrium states ρth = e−βH/tr[e−βH ] for
Hamiltonian H and at inverse temperatures β = 1

kB T ,
the thermodynamic entropy Sth equals the information
theory entropy, S, times the Boltzmann constant kB, i.e.
Sth(ρth) = kB S(ρth). The information theory entropy,
known as the Shannon or von Neumann entropy, for a
general state ρ is defined as

S(ρ) := −tr[ρ ln ρ]. (8)

Many researchers in quantum thermodynamics assume
that the thermodynamic entropy is naturally extended
to non-equilibrium states by the information theoretic
entropy. For example, this assumption is made when
using the von Neumann entropy in connection with the
second law and the analysis of thermal processes, and
in the calculation of efficiencies of QTMs. Evidence that
this extension is appropriate has been provided via many
routes including Landauer’s original work, see [28] for
an introduction. The suitability of this extension and its
limitations remain however debated issues [44,45]. For
the remainder of this article, we will assume that the
von Neumann entropy S is the natural extension of the
thermodynamic entropy Sth.

Figure 1. A gas in a box starts with a thermal distribution at
temperature T . Maxwell’s demon inserts a wall and selects faster
particles to pass through a door in the wall to the left, while he
lets slower particles pass to the right, until the gas is separated
into two boxes that are not in equilibrium. The demon attaches a
bucket (or another suitable work storage system) and allows the
wall to move under the pressure of the gases. Some gas energy
is extracted as work, Wext , raising the bucket. Finally, the gas
is brought in contact with the environment at temperature T ,
equilibrating back to its initial state (#U = 0) while absorbing
heat Qabs = Wext . A comprehensive review of Maxwell’s demon
is [29].

2.2. Maxwell’s demon

Maxwell’s demon is a creature that is able to observe the
motion of individual particles and use this information
(by employing feedback protocols discussed in Section
3.3) to convert heat into work in a cyclic process using
only a single heat bath at temperature T . By separating
slower, ‘colder’ gas particles in a container from faster,
‘hotter’ particles, and then allowing the hotter gas to
expand while pushing a piston, see Figure 1, the demon
can extract work while returning to the initial mixed gas.
For a single particle gas, the demon’s extracted work in a
cyclic process is

⟨Wdemon
ext ⟩ = kBT ln 2. (9)

Maxwell realised in 1867 that such a demon would
appear to break the second law of thermodynamics, see
Equation (5), as it converts heat completely into work
in a cyclic process, resulting in a positive extracted work,
⟨Wdemon

ext ⟩ = ⟨Q⟩ −#U ̸≤ T#Sth −#U = 0. The crux
of this paradoxical situation is that the demon acquires
information about individual gas particles and uses this
information to convert heat into useful work. One way of
resolving the paradox was presented by Bennett [46] and
invokes Landauer’s erasure principle [47], as described
in the next section and presented highly accessibly in
[28]. Other approaches consider the cost the demon has
to pay upfront when identifying whether the particle
is slower or faster [30]. Experimentally, the thermody-
namic phenomenon of Maxwell’s demon remains highly
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relevant – for instance, cooling a gas can be achieved
by mimicking the demonic action [48]. An example of
an experimental test of Maxwell’s demon is discussed in
Section 3.4.

2.3. Landauer’s erasure principle

In a seminal paper [47], Landauer investigated the
thermodynamic cost of information processing tasks. He
concluded that the erasure of one bit of information
requires a minimum dissipation of heat,

⟨Qmin
dis ⟩ = kB T ln 2, (10)

that the erased system dissipates to a surrounding en-
vironment, cf. Figure 1, in equilibrium at temperature
T . The erasure of one bit, or ‘reset’, here refers to the
change of a system being in one of two states with equal
probability, I

2 (i.e. 1 bit), to a definite known state, |0⟩ (i.e.
0 bits). (We note that, contrary to everyday language, the
technical term ‘information’ here refers to uncertainty
rather than certainty. Erasure of information thus im-
plies increase of certainty.) Landauer’s principle has been
tested experimentally only very recently, see Section 3.4.

The energetic cost of the heat dissipation is balanced
by a minimum work that must be done on the system,
⟨Wmin⟩ = #U −⟨Q⟩ = ⟨Qmin

dis ⟩, to achieve the erasure at
constant average energy, #U = 0. Bennett argued [46]
that Maxwell’s demonic paradox can thus be resolved
by taking into account that the demon’s memory holds
bits of information that need to be erased to completely
close the thermodynamic cycle and return to the initial
conditions. Thework that the demon extracted in the first
step, see previous section, then has to be spent to erase
the information acquired, with no net gain of work and
in agreement with the second law.

While Landauer’s principle was originally formulated
for the erasure of one bit of classical information, it
is straightforwardly extended to the erasure of a gen-
eral mixed quantum state, ρ, which is transferred to the
blank state |0⟩. The minimum required heat dissipation
is then ⟨Qmin

dis ⟩ = kB T S(ρ) following from the second
law, Equation (5). A recent analysis of Landauer’s prin-
ciple [49] uses a framework of thermal operations, cf.
Section 5, to obtain corrections to Landauer’s bound
when the effective size of the thermal bath is finite. They
show that the dissipated heat is in general above Lan-
dauer’s bound and only converges to it for infinite-sized
reservoirs. Probabilistic erasure is considered in [50] and
the trade-off between the probability of erasure andmini-
mal heat dissipation is demonstrated. In the simplest case,
the erasure protocol achieving the Landauer’s bound will
require an idealised quasi-static process which would

take infinitely long to implement. The time of erasure is
investigated in [51] and it is shown that Landauer’s limit
is achievable in finite time when allowing exponentially
suppressed erasure errors.

2.4. Erasure with quantum side information

The heat dissipation during erasure is non-trivial when
the initial state of the system is a mixed state, ρS. In
the quantum regime, mixed states can always be seen
as reduced states of global states, ρSM , of the system
S and a memory M, with ρS = trM[ρSM]. A ground-
breaking paper [8] takes this insight seriously and sets
up an erasure scenario where an observer can operate
on both, the system and the memory. During the global
process, the system’s local state is erased, ρS '→ |0⟩, while
the memory’s local state, ρM = trS[ρSM], is not altered.
In other words, this global process is locally indistin-
guishable from the erasure considered in the previous
section. However, contrary to the previous case, erasure
with ‘side-information’ , i.e. using correlations of the
memorywith the system, canbe achievedwhile extracting
a maximum amount of work

⟨Wmax
ext ⟩ = −kB T S(S|M)ρSM . (11)

Here, S(S|M)ρSM is the conditional von Neumann en-
tropy between the system and memory, S(S|M)ρSM =
S(ρSM) − S(ρM). Crucially, the conditional entropy can
be negative for some quantum correlated states (a sub-
set of the set of entangled states), thus giving a posi-
tive extractable work. This result contrasts strongly with
Landauer’s principle valid for both classical and quantum
states when no side-information is available. The possi-
bility to extract work during erasure is a purely quan-
tum feature that relies on accessing the side-information
[8]. That is, to practically obtain positive work requires
knowledge of and access to an initial entangled state of
the system and the memory, and the implementation of
a carefully controlled process on the degrees of freedom
of both parties. The entanglement between system and
memory will be destroyed in the process and can be seen
as ‘fuel’ from which work is extracted.

2.5. Work from correlations

The thermodynamic work and heat associated with cre-
ating or destroying (quantum) correlations have been
studied intensely, e.g. [52–59], for a variety of settings,
including unitary and non-unitary processes. For exam-
ple, the thermodynamic efficiency of an engine operating
on pairs of correlated atoms can be quantified in terms of
quantum discord and it was shown to exceed the classical
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efficiency value [54]. In [60], theminimal heat dissipation
for coupling a harmonic oscillator that starts initially in
local thermal equilibrium, and ends up correlated with a
bath of harmonic oscillators in a global thermal equilib-
rium state, is determined and it was shown that this heat
contribution resolves a previously reported second law
violation.

Thermodynamic aspects of creating correlations are
also studied in [59] where the minimum work cost is
established for unitarily evolving an initial, locally ther-
mal, state ofN systems to a global correlated state. Amax-
imum temperature is derived at which entanglement can
still be created, along with the minimal associated energy
cost. In turn, when wanting to extract work from many-
body states that are initially globally correlated, while
locally appearing thermal, the maximum extractable
work under global unitary evolutions is discussed in [58]
for initial entangled and separable states, and those dia-
gonal in the energy basis. This contrasts with the non-
unitary process of erasure with side-information,
discussed in Section 2.4.

2.6. Work from coherences

While erasure with side-information discussed in
Section 2.4 and the results in Section 2.5 illustrate the
quantum thermodynamic aspect of correlations, a sec-
ond quantum thermodynamic feature arises due to the
presence of coherences. A recent paper [61] identifies
projection processes as a route to analyse the thermo-
dynamic role of coherences. Projection processes map
an initial state, ρ, which has coherences in a particular
basis of interest, {&k}k with k = 1, 2, 3, . . ., to a state
in which these coherences are removed, i.e. ρ '→ η :=∑

k&k ρ &k. These processes can be interpreted as un-
selective measurements of an observable with eigenbasis
{&k}k, a measurement in which not the individual mea-
surement outcomes are recorded but only the statistics of
the outcomes is known. Just like in the case of Landauer’s
erasuremap, the state transfer achieved by the newmath-
ematical map can be implemented in various physical
ways. Different physical implementations of the same
map will have different work and heat contributions.
It was shown that there exists a physical protocol to
implement the projection process such that a non-trivial
average work can be extracted from the initial state’s
coherences. For the example that the basis, {&k}k, is the
energy eigenbasis of a Hamiltonian H = ∑

k Ek&k with
eigenenergies Ek, the maximum amount of average work
that can be extracted in a projection process is

⟨Wmax
ext ⟩ = kB T (S(η) − S(ρ)) ≥ 0. (12)

Importantly, S(η) is larger than S(ρ) if and only if the
state ρ had coherences with respect to the energy eigen-
basis, while the entropy does not change under projection
processes for classical states. Thus, the extracted work
here is due to the quantum coherences in the initial state.
We note that ‘decohering’ a state ρ is a physical imple-
mentation of the same state transfer, ρ '→ η, during
which coherences are washed out by the environment in
an uncontrolled way and no work is extracted. This is
a suboptimal process – to achieve the maximum work
an optimal implementation needs to be realised which
requires a carefully controlled protocol of interacting
the system with heat and work sources [61]. It is worth
noting that in contrast to Maxwell’s demon whose work
extraction is based on the knowledge of ‘microstates’
and appears to violate the second law when information
erasure is not considered, gaining work from coherences
is in accordance with the second law. Once the projection
process is completed, the final state has lost its coherence,
i.e. here the coherences have been used as ‘fuel’ to extract
work.

3. Classical and quantum non-equilibrium
statistical physics

In this section, the statistical physics approach is out-
lined that rests on the definition of fluctuating heat and
work from which it derives the ensemble quantities of
average heat and average work discussed in Section 2.
Fluctuation theorems and experiments are first described
in the classical regime before they are extended to the
quantum regime.

3.1. Definitions of classical fluctuatingwork and
heat

In classical statistical physics, a single particle is assigned
a point, x = (q, p), in phase space while an ensemble of
particles is described with a probability density function,
P(x), in phase space. The Hamiltonian of the particle is
denoted as H(x, λ) where x is the phase space point of
the particle for which the energy is evaluated and λ is
an externally controlled force parameter that can change
in time. For example, a harmonic oscillator Hamilto-
nian H(x, λ) = p2

2m + mλ2q2
2 can become time dependent

through a protocol according to which the frequency, λ,
of the potential is varied in time, λ(t). This particular
example will be discussed further in Section 6 on QTMs.

Each particle’s state will evolve due to externally ap-
plied forces and due to the interaction with its environ-
ment, resulting in a trajectory xt = (qt , pt) in phase
space, see Figure 2. The fluctuating work (done on the
system) and the fluctuating heat (absorbed by the system)
for a single trajectory xt followed by a particle in the
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Figure 2. Phase space spanned by position and momentum
coordinates, x = (q, p). A single trajectory, xt , starts at phase
space point x0 and evolves in time t to a final phase space point
xτ . This single trajectory has an associated fluctuating workWτ ,xt .
In general, an ensemble of initial phase space points described
by an initial probability density functions, P0(x0), evolves to
some final probability density function Pτ (xτ ). The ensemble
of trajectories has an associated average work ⟨Wτ ⟩. For closed
dynamics, the final probability distribution P0(xτ ) (dashed line)
has the same functional dependence as the initial probability
distribution P0(x0) just evaluated at the final phase space
point xτ .

time window [0, τ ] are defined, analogously to (2), as
the energy change due to the externally controlled force
parameter and the response of the system’s state,

Wτ ,xt :=
∫ τ

0

∂H(xt , λ(t))
∂λ(t)

λ̇(t) dt and

Qτ ,xt :=
∫ τ

0

∂H(xt , λ(t))
∂xt

ẋt dt. (13)

These are stochastic variables that depend on the parti-
cle’s trajectory xt in phase space. Together, they give the
energy change of the system, cf. (3), along the trajectory

Wτ ,xt + Qτ ,xt = H(xτ , λ(τ )) − H(x0, λ(0)). (14)

For a closed system, one has

Qclosed
τ ,xt =

∫ τ

0

(
∂H(xt , λ(t))

∂qt
q̇t + ∂H(xt , λ(t))

∂pt
ṗt
)
dt

=
∫ τ

0

(
−ṗt q̇t + q̇t ṗt

)
dt = 0,

Wclosed
τ ,xt = H(xτ , λ(τ )) − H(x0, λ(0)), (15)

since the (Hamiltonian) equations of motion, ∂H∂q = −ṗ
and ∂H

∂p = q̇, apply to closed systems. This means that
a closed system has no heat exchange (a tautological
statement) and that the change of the system’s energy
during the protocol is identified entirely with work for
each single trajectory.

The average work of the system refers to repeating the
same experiment many times, each time preparing the
same initial system state, bringing the system in contact

with the samekindof environment and applying the same
protocol. The average work is mathematically obtained
as the integral over all trajectories, {xt}, explored by the
system, ⟨Wτ ⟩ :=

∫
Pt(xt)Wτ ,xt dD(xt), where Pt(xt)

is the probability density of a trajectory xt and dD(xt)
the phase space integral over all trajectories [6]. For a
closed system, the trajectories are fully determinedby their
initial phase space point alone: each trajectory starting
with x0 evolves deterministically to xτ at time τ . Thus,
the probability of the trajectory is given by the initial
probability P0(x0) of starting in phase space point x0,
dD(xt) → dx0, and the Jacobian determinant is dx0

dxτ = 1.
Combining with Equations (13), (14) and (15), one
obtains

⟨Wclosed
τ ⟩ =

∫
P0(x0)

(
H(xτ (x0), λ(τ ))

− H(x0, λ(0))
)
dx0,

=
∫

P0(xτ )H(xτ , λ(τ ))
∣∣∣∣
dx0
dxτ

∣∣∣∣ dxτ

−
∫

P0(x0)H(x0, λ(0)) dx0,

= Uτ − U0, (16)

i.e. the average work for a closed process is just the dif-
ference of the average energies. Because the evolution is
closed, the distribution in phase space moves but keeps
its volume, cf. Figure 2, which is known as Liouville’s
theorem. The final probability distribution, P0(xτ ), has
indeed the same functional form as the initial probability
distribution, P0(x0), just applied to the final trajectory
points xτ . That is, the probability of finding xτ at the
end is exactly the same as the probability of finding x0
initially. In contrast, the probability distribution would
change in time in open dynamics due to the system’s
non-deterministic interaction with the environment. In
(16), the initial average energy of the system is defined
as U0 =

∫
P0(x)H(x, λ(0)) dx and similarly, Uτ is the

average energy at time τ .
In statistical physics experiments, the average work is

often established by measuring the fluctuating work Wj
for a trajectory observed in a particular run j of the expe-
riment, repeating the experimentN times, and taking the
arithmetic mean of the results. In the limit N → ∞,
this is equivalent to constructing (from a histogram of
the outcomesWj) the probability density distribution for
the work, P(W), and then averaging with this function to
obtain the average work

⟨Wτ ⟩ = lim
N→∞

1
N

N∑

j=1
Wj =

∫
P(W)W dW . (17)
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3.2. Classical fluctuation relations

A central recent breakthrough in classical statistical me-
chanics is the extension of the second law of thermody-
namics, an inequality, to equalities valid for large classes
of non-equilibrium processes. Detailed fluctuation rela-
tions show that the probability densities of stochastically
fluctuatingquantities for anon-equilibriumprocess, such
as entropy, work and heat, are linked to equilibrium
properties and corresponding quantities for the time-
reversed process [4,62,63]. By integrating over the proba-
bility densities, one obtains integral fluctuation relations,
such as Jarzynski’s work relation [3].

An important detailed fluctuation relation is Crooks
relation for a system in contact with a bath at inverse
temperature β = 1/(kBT) for which detailed balanced is
valid [4]. The relation links the work distribution PF(W)

associatedwith a forward protocol changing the force pa-
rameter λ(0) → λ(τ ), to the work distribution PB(−W)

associated with the time-reversed backwards protocol
where λ(τ ) → λ(0),

PF(W) = PB( − W) eβ(W−#F). (18)

Here, the forward and backward protocols each start with
an initial distribution that is thermal at inverse temper-
ature β for the respective values of the force parameter.
The free energy difference #F = F(τ ) − F(0) refers to
the two thermal distributions with respect to the final,
H(x, λ(τ )), and initial, H(x, λ(0)), Hamiltonian in the
forward protocol at inverse temperature β . Here, the
free energies, defined in (6), can be expressed as F(0) =
− 1
β lnZ(0) at time 0 and similarly at time τ with classical

partition functions Z(0) :=
∫
e−βH(x,λ(0)) dx and simi-

larly Z(τ ). Rearranging and integrating over dW on both
sides result in a well-known integral fluctuation relation,
the Jarzynski equality [3],

⟨e−βW ⟩ =
∫

PF(W) e−βW dW = e−β#F . (19)

Pre-dating Crooks relation, Jarzynski proved his
equality [3] by considering a closed system that starts
with a thermal distribution, P0(x0) = e−βH(x0,λ(0))

Z(0) , for a
given Hamiltonian H(x, λ(0)) at inverse temperature β .
The Hamiltonian is externally modified through its force
parameter λ which drives the system out of equilibrium
and into evolution according to Hamiltonian dynamics
in a time interval [0, τ ]. Such experiments can be realised,
e.g. with colloidal particles see Section 3.4, where the
experiment is repeated many times, each time imple-
menting the same force protocol. Averages can then be
calculated over many trajectories, each starting from an
initial phase space point that was sampled from an initial

thermal distribution. The average exponentiated work
done on the system is then obtained similarly to (16) and
one obtains

⟨e−βWclosed
τ ⟩ =

∫
P0(x0) e−βW

closed
τ ,xτ dx0

=
∫ e−βH(x0,λ(0))

Z(0) e−β(H(xτ ,λ(τ ))−H(x0,λ(0))) dx0,

= 1
Z(0)

∫
e−βH(xτ ,λ(τ ))

∣∣∣∣
dx0
dxτ

∣∣∣∣ dxτ

= Z(τ )

Z(0) = e−β#F . (20)

The beauty of this equality is that for all closed but arbi-
trarily strongly non-equilibrium processes, the average
exponentiated work is determined entirely by equilib-
rium parameters contained in#F. As Jarzynski showed,
the equality can also be generalised to open systems [64].
By applying Jensen’s inequality ⟨e−βW ⟩ ≥ e−β⟨W⟩, the
Jarzynski equality turns into the standard second law of
thermodynamics, cf. Equation (7),

⟨W⟩ ≥ #F. (21)

Thus, Jarzynski’s relation strengthens the second law by
including all moments of the non-equilibrium work, res-
ulting in an equality from which the inequality follows
for the first moment.

Fluctuation theorems have been measured, for exam-
ple, for a defect centre in diamond [65], for a torsion pen-
dulum [66] and in an electronic system [67]. They have
also been used to infer, from themeasurable work in non-
equilibrium pulling experiments, the desired equilibrium
free energy surface of biomolecules [68,69], which is not
directly measurable otherwise.

3.3. Fluctuation relations with feedback

It is interesting to see how Maxwell demon’s feedback
process discussed in Section 2.2 can be captured in a gen-
eralised Jarzynski equation [6]. Again, one assumes that
the system undergoes closed dynamics with a
time-dependent Hamiltonian; however, now the force
parameter in the Hamiltonian is changed according to a
protocol that depends on the phase space point the system
is found in. For example, for the two choices of a particle
being in the left box or the right box, see Figure 3, the
initial Hamiltonian H(x, λ(0)) will be changed to either
H(x, λ1(τ )) for the particle in the left box orH(x, λ2(τ ))
for the particle in the right box. Calculating the average
exponentiated work for this situation, see Equation (20),
one now notices that the integration over trajectories
includes the two different evolutions, driven by one of
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the two Hamiltonians. The free energy difference, #F,
previously corresponding to theHamiltonian change, see
Equation (20), is now itself a fluctuating function. Either
it is#F = F(1)−F(0) or it is#F = F(2)−F(0), depending
on the measurement outcome in each particular run. As
a result, the corresponding work fluctuation relation can
be written as

⟨e−β(W−#F)⟩ = γ , (22)

where the average ⟨·⟩ includes an average over the twodif-
ferent protocols. Here, γ ≥ 0 characterises the feedback
efficacy, which is related to the reversibility of the non-
equilibrium process. When H(x, λ1(τ )) = H(x, λ2(τ )),
i.e. no feedback is actually implemented, then γ becomes
unity and the Jarzynski equality is recovered. The maxi-
mum value of γ is determined by the number of different
protocol options, e.g. for the two feedback choices dis-
cussed above, one has γmax = 2.

Apart from measuring ⟨e−β(W−#F)⟩ by performing
the feedbackprotocolmany times and recording thework
done on the system, γ can also be measured experi-
mentally, see Section 3.4. To do so, the system is ini-
tially prepared in a thermal state for one of the final
Hamiltonians, sayH(y, λ1(τ )), at inverse temperature β .
The force parameter λ1(t) in the Hamiltonian is now
changed backwards, λ1(τ ) → λ(0), without any feed-
back. The particle’s final phase space point yτ is recorded.
The probability P(1)(yτ ) is established that the particle
ended in the phase space volume that corresponds to
the choice of H(y, λ1(τ )) in the forward protocol, in this
example in the left box. The same is repeated for the

other final Hamiltonians, i.e. H(y, λ2(τ )). The efficacy
is now the added probability for each of the protocols,
γ = ∑

k P(k)(yτ ).
Applying Jensen’s inequality to Equation (22), one

nowobtains ⟨W⟩ ≥ ⟨#F⟩− 1
β ln γ , whichwhenassuming

that a cycle has been performed, ⟨#F⟩ = 0, the maximal
value of γ for two feedback options has been reached,
γ = 2, and the inequality is saturated, becomes

⟨Wdemon
ext ⟩ = −⟨W⟩ = kBT ln 2, (23)

in agreement with Equation (9). A recent review pro-
vides a detailed discussion of feedback in classical fluc-
tuation theorems [31]. The efficiency of feedback control
in quantum processes has also been analysed, see e.g.
[70–72].

3.4. Classical statistical physics experiments

A large number of statistical physics experiments are
performed with colloidal particles, such as polystyrene
beads, that are suspended in a viscous fluid. The link
between information theory and thermodynamics has
been confirmedbygroundbreaking colloidal experiments
only very recently. For example, the heat-to-work con-
version achieved by a Maxwell demon, see Sections 2.2
and 3.3, intervening in the statistical dynamics of a sys-
tem was investigated [73] with a dimeric polystyrene
bead suspended in a fluid and undergoing rotational
Brownian motion, see Figure 3(a). An external electrical
potential was applied so that the bead was effectively
moving on a spiral staircase, see Figure 3(b). The demon’s

Figure 3. (a) Dimeric polystyrene bead and electrodes for creating the spiral staircase. (b) Schematic of a Brownian particle’s dynamics
climbing the stairs with the help of the demon. (c) Experimental results of ⟨e−β(W−#F)⟩ for the feedback process, and of γ for a
time-reversed (non-feedback) process, see Equation (22), over the demon’s reaction time ϵ. Figures taken from [73] reproduced with
permission.
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Figure 4. Left (a)–(f) Erasure protocol for a particle trapped in a double well. Particles starting in either well will end up in the right-hand
side well at the end of the protocol. Right (b) Measured heat probability distribution P(Qdis) over fluctuating heat value Qdis for a fixed
protocol cycle time. Right (c) Average heat in units of kBT , i.e. ⟨Qdis⟩/(kB T), over varying cycle time τ in seconds. Figures taken from [75]
reproduced with permission.

actionwas realisedbymeasuring if theparticle hadmoved
up and, depending on this, shifting the external ladder
potential quickly, such that the particle’s potential energy
was ‘saved’ and the particle would continue to climb up.
The work done on the particle, W , was then measured
for over 100,000 trajectories to obtain an experimen-
tal value of ⟨e−β(W−#F)⟩, required to be identical to 1
by the standard Jarzynski equality, Equation (20). Due
the feedback operated by the demon, the value did turn
out larger than 1, see Figure 3(c), in agreement with
Equation (22). A separate experiment implementing the
time-reversed process without feedback was run to also
determine the value of the efficacy parameter γ predicted
to be the same as ⟨e−β(W−#F)⟩. Figure 3(c) shows very
good agreement between the two experimental results for
varying reaction times of the demon, reaching the highest
feedback efficiency when the demon acted quickly on the
knowledge of the particle’s position. The theoretical pre-
dictions of fluctuation relations that include Maxwell’s
demon [6] have also been tested with a single electron
box analogously to the original Szilard engine [74].

Another recent experiment measured the heat dissi-
pated in an erasure process, see Section 2.3, with a col-
loidal silica bead that was optically trapped with tweezers
in a double well potential [75]. The protocol employed,
see Figure 4, ensured that a bead starting in the left well
would move to the right well, while a starting position
in the right well remained unchanged. The lowering and
raising of the energetic barrier between the wells were
achieved by changing the trapping laser’s intensity. The
tilting of the potential, seen in Figure 4(c)–(e), was neatly
realised by letting the fluid flow, resulting in a force acting

on the bead suspended in the fluid. The dissipated heat
was measured by following the trajectories xt of the bead
and integrating, Qdis = −

∫ τ
0
∂U(xt ,λ(t))

∂xt ẋt dt, cf. Equa-
tion (13). Here, U(xt , λ(t)) is the explicitly time-varying
potential that togetherwith a constant kinetic termmakes
up a time-varying Hamiltonian H(xt , λ(t)) = T(xt) +
U(xt , λ(t)). The measured heat distribution P(Qdis) and
average heat ⟨Qdis⟩, defined analogously to Equation (17),
are shown on the right in Figure 4. The time taken to
implement the protocol is denoted by τ . In the quasi-
static limit, i.e. the limit of long times in which the system
equilibrates throughout its dynamics, it was found that
theLandauer limit, kB T ln 2, for theminimumdissipated
heat is indeed approached.

Another beautiful high-precision experiment uses
electrical feedback to effectively trap a colloidal particle
and implement an erasure protocol [76]. This experi-
ment provides a direct comparison between the mea-
sured dissipated heat for the erasure process as well as
a non-erasure process showing that the heat dissipation
is indeed a consequence of the erasure of information.
Possible future implementations of erasure and work
extraction processes using a quantum optomechanical
system, consisting of a two-level system and amechanical
oscillator, have also been proposed [77].

3.5. Definitions of quantumfluctuatingwork and
heat

By its process character, it is clear that work is not an
observable [41], i.e. there is no operator, w, such that
W = tr[w ρ]. To quantise the Jarzynski equality, the
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crucial step taken is to define the fluctuating quantum
work for closed dynamics as a two-point correlation
function. That is, a projective measurement of energy
needs to be performed at the beginning and end of the
process to gain knowledge of the system’s energetic
change. This enables the construction of a work dis-
tribution function (known as the two-point measure-
ment work distribution) and allows the formulation of
the Tasaki–Crooks relation and the quantum Jarzynski’s
equality [5,41,78,79].

To introduce the quantum fluctuating work and heat,
consider a quantum system with initial state ρ(0) and ini-
tial Hamiltonian H(0) = ∑

n E
(0)
n |e(0)n ⟩⟨e(0)n | with eigen-

values E(0)
n and energy eigenstates |e(0)n ⟩. A closed system

undergoes dynamics due to its time-varyingHamiltonian
which generates a unitary transformation (here, T stands
for a time-ordered integral) V (τ ) = T e−i

∫ τ
0 H(t) dt/! and

ends in a final state ρ(τ ) = V (τ ) ρ(0)V (τ )† and a final
Hamiltonian H(τ ) = ∑

m E(τ )
m |e(τ )m ⟩⟨e(τ )m |, with energies

E(τ )
m and energy eigenstates |e(τ )m ⟩. To obtain the fluctu-

ating work, the energy is measured at the beginning of
the process, giving e.g. E(0)

n , and then again at the end
of the process, giving e.g. in E(τ )

m . The difference between
the measured energies is now identified entirely with
fluctuating work,

Wclosed
m,n := E(τ )

m − E(0)
n , (24)

as the system is closed, the evolution is unitary and no
heat dissipation occurs, cf. the classical case (15). The
work distribution is then peaked whenever the distribu-
tion variableW coincides withWτ

m,n,

P(W) =
∑

n,m
p(τ )
n,m δ

(
W − (E(τ )

m − E(0)
n )

)
. (25)

Here, p(τ )
n,m = p(0)

n p(τ )
m|n is the joint probability distribution

of finding the initial energy level E(0)
n and the final energy

E(τ )
m . This can be broken up into the probability of finding

the initial energy E(0)
n , p(0)

n = ⟨e(0)n |ρ(0)|e(0)n ⟩, and the
conditional probability for transferring from n at t = 0
tom at t = τ , p(τ )

m|n = |⟨e(τ )m |V (τ )|e(0)n ⟩|2.
The average work for the unitarily driven non-

equilibrium process can now be calculated as the average
over the work probability distribution, i.e. using (17),

⟨Wclosed
τ ⟩ =

∫ ∑

n,m
p(τ )
n,m δ(W − (E(τ )

m − E(0)
n ))W dW

=
∑

n,m
p(0)
n p(τ )

m|n (E(τ )
m − E(0)

n )

=
∑

m
p(τ )
m E(τ )

m −
∑

n
p(0)
n E(0)

n , (26)

where p(τ )
m := ∑

n p
(τ )
n,m are the marginals of the joint

probability distribution. Assuming the initial state ρ(0)

was diagonal in the initial energy basis, {|e(0)n }n, the
p(τ )
m turn out to be just the probabilities for measur-
ing the energies E(τ )

m in the final state ρ(τ ), i.e. p(τ )
m =〈

e(τ )m |ρ(τ )|e(τ )m
〉
. Thus, the average work for the unitary

process is just the internal energy difference, cf. (16),

⟨Wclosed
τ ⟩ = tr[H(τ ) ρ(τ )] − tr[H(0) ρ(0)] = #U . (27)

3.6. Quantum fluctuation relations

With the above definitions, in particular that of the work
distribution, the quantum Jarzynski equation can be
readily formulated for a closed quantum system under-
going externally driven (withunitaryV ) non-equilibrium
dynamics [5,41,78–80]. The average exponentiated
work done on a system starting in initial state ρ(0) now
becomes, cf. (20),

⟨e−βWclosed
τ ⟩ =

∫
P(W) e−βW dW=

∑

n,m
p(τ )
n,m e−β(E(τ )

m −E(0)
n ).

(28)

When the initial state is a thermal state for the Hamilto-
nianH0 at inverse temperatureβ , e.g.ρ(0) =∑n p

(0)
n |e(0)n ⟩

⟨e(0)n |, with thermal probabilities p(0)
n = e−βE

(0)
n

Z(0) and parti-
tion function Z(0) = ∑

n e−βE
(0)
n , one obtains the quan-

tum Jarzynski equality

⟨e−βWclosed
τ ⟩ =

∑

n,m

e−βE
(0)
n

Z(0) p(τ )
m|n e

−β(E(τ )
m −E(0)

n )

= 1
Z(0)

∑

m
e−βE

(τ )
m = Z(τ )

Z(0) = e−β#F .

(29)

Here, we have used that the conditional probabilities
sum to unity,

∑
n p

(τ )
m|n = ∑

n |⟨e(τ )m |V (τ )|e(0)n ⟩|2 = 1 and
Z(τ ) = ∑

m e−βE
(τ )
m is, like in the classical case, the par-

tition function of the hypothetical thermal configuration
for thefinalHamiltonian,H(τ ). The free energydifference
is, like in the classical case,#F = − 1

β ln Z(τ )

Z(0) .
Similarly, the classical Crooks relation, cf. Equation

(18), can also be re-derived for the quantum regime and
is known as the Tasaki–Crooks relation [5],

PF(W)

PB( − W)
= eβ(W−#F). (30)

It is interesting to note that in the two-point mea-
surement scheme, both, the quantum Jarzynski equality
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and the Tasaki–Crooks relation, show no difference to
their classical counterparts, contrary to what one might
expect. A debated issue is that the energy measurements
remove coherences with respect to the energy basis [41],
and these do not show up in thework distribution, P(W).
It has been suggested [61] that the non-trivial work and
heat that may be exchanged during the second measure-
ment, see Section 2.6, implies that identifying the energy
change entirelywith fluctuatingwork (24) is inconsistent.
If the initial state is not thermal but has coherences,
then also the first measurement will non-trivially affect
these initial coherences and lead to work and heat contri-
butions. Work probability distributions and generalised
Jarzynski-type relations have been proposed to account
for these coherences using path integral and quantum
jump approaches [81,82].

3.7. Quantum fluctuation experiments

While a number of interesting avenues to test fluctua-
tion theorems at the quantum scale have been proposed
[83–86], the experimental reconstruction of the work
statistics for a quantum protocol has long remained
elusive. A new measurement approach has recently been
devised that is based on well-known interferometric
schemes of the estimation of phases in quantum sys-
tems, which bypasses the necessity of two direct pro-
jective measurements of the system state [87]. The first
quantum fluctuation experiment that confirms the quan-
tum Jarzynski relation, Equation (29), and the Tasaki–
Crooks relation, Equation (30), with impressive accuracy
has recently been implemented in a nuclear magnetic
resonance (NMR) system using such an interferomet-
ric scheme [88]. Another very recent experiment uses
trapped ions to measure the quantum Jarzynski equality
[89] with the two measurement methods used to derive
the theoretical result in Section 3.6.

The NMR experiment was carried out using liquid-
state NMR spectroscopy of the 1H and 13C nuclear spins
of a chloroform molecule sample. This system can be
regarded as a collection of identically prepared, non-
interacting, spin-1/2 pairs [90]. The 13C nuclear spin is
the driven system, while the 1H nuclear spin embodies
an auxiliary degree of freedom, referred to as ‘ancilla’.
Instead of performing two projective measurements on
the system, it is possible to reconstruct the system’s work
distribution with an interferometric scheme in which the
ancilla is instrumental [87]. The ancilla here interacts
with the system at the beginning and the end of the
process, and as a result, its state acquires a phase. This
phase corresponds to the energy difference experienced
by the system and the ancilla ismeasured only once to ob-
tain the energy difference of the system. The 13C nuclear
spin was prepared initially in a pseudo-equilibrium state

ρ(0) at inverse temperature β , for which four values were
realised. The experiment implemented the time-varying
spin Hamiltonian, H(t), resulting in a unitary evolution,
i.e. V in Section 3.6, by applying a time-modulated radio
frequency field resonant with the 13C nuclear spin in a
short time window τ . The (forward) work distribution
of the spin’s evolution, PF(W) see Figure 5(a), was then
reconstructed through a series of one- and two-body op-
erations on the system and the ancilla, and measurement
of the transverse magnetisation of the 1H nuclear spin.
Similarly, a backwards protocol was also implemented
and the backwards work distribution, PB(W), measured,
cf. Sections 3.2 and 3.4.

The measured values of the Tasaki–Crooks ratio,
PF(W)/PB( − W), are shown over the work value W
in Figure 5(b) for four values of temperature. The trend
followed by the data associated with each temperature
was in very good agreement with the expected linear
relation, confirming thepredictions of theTasaki–Crooks
relation. The cutting point between the two work distri-
butions was used to determine the value of #F experi-
mentally which is shown in Figure 5(c). Calculating the
average exponentiated work with the measured work
distribution, the data also showed good agreement with
the quantum Jarzynski relation, Equation (29), see table
in Figure 5(d).

4. Quantum dynamics and foundations of
thermodynamics

The information theoretic approach to thermodynamics
employs many standard tools of quantum information to
study mesoscopic systems. For instance, an abstract view
of dynamics, minimal in the details of Hamiltonians, is
often employed in quantum information. Such a view
of dynamics as a map between quantum states serves
to produce rules common to generic dynamics and has
served the study of computing and technologies well. In
this section, we describe some of these techniques and
theorems and highlight how they are used in quantum
thermodynamics.

4.1. Completely positivemaps

We begin by reviewing the description of generic quan-
tum maps [91–96]. The point of describing
dynamics through a ‘map’ as opposed to a model of tem-
poral dynamics (i.e. a Hamiltonian) is deliberate. Maps
are not explicit functions of time (though they can be
parametrised by time, as we will see later), but are two-
point functions. They accept initial states of the dynamics
they model and output final states. Specifically, a com-
pletely positive trace-preserving (CPTP) map transforms
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(a)

(b)

(d)

(c)

Figure 5. (a) Experimental work distributions corresponding to the forward (backward) protocol, PF(W) (PB( − W)), are shown as red
squares (blue circles). (b) The Tasaki–Crooks ratio is plotted on a logarithmic scale for four values of the system’s temperature. (c)
Crosses indicate mean values and uncertainties for#F and β obtained from a linear fit to data compared with the theoretical prediction
indicated by the red line. (d) Experimental values of the left- and right-hand side of the quantum Jarzynski relation measured for three
temperatures together with their respective uncertainties, and theoretical predictions for ln Z(τ )

Z(0) showing good agreement. Figures taken
from [88], reproduced with permission.

input density matrices ρ into physical output states ρ′.
The term ‘physical’ here refers to the requirement that
the output state is again a well-defined density matrix.

Amap, has to obey several rules to guarantee that its
outputs are physical states. These properties include:

(1) trace preservation: ρ′ := ,(ρ) has unit trace for
all input states ρ of dimensionality d. If this is vio-
lated, the output states become unphysical in that
Born’s rule cannot be applied directly anymore.

(2) positivity:,(ρ) has non-negative eigenvalues, in-
terpreted as probabilities.

(3) complete positivity: ∀k ∈ {0, . . .∞} : (I(k) ⊗ ,)

(σ (k+d))hasnon-negative eigenvalues for all states
σ (k+d). This subsumes positivity.

The final property is the statement that if the CPTP map
is acting on a subsystem of dimension d which is part of
a larger (perhaps entangled) system of dimension k + d,
whose state is σ (k+d), then the resultant global state must
also be a ‘physical’ state.

For instance, let us consider the transpose map T
which, when applied to a given densitymatrix, transposes
all its matrix elements in a fixed basis. When applied to
physical states of dimension d, this map always outputs
physical states of dimension d. For example, for a general
qubit state ρ with Bloch vector r⃗ = (x, y, z), the transpo-
sition map gives

ρ = 1
2

(
1 + z x − iy
x + iy 1 − z

)
'→ T(ρ) = 1

2

(
1 + z x + iy
x − iy 1 − z

)
.

(31)
Note that the eigenvalues of the matrix are invariant
under the transposition map T.

We can now consider the action of the transpose map
on a subsystem. For example, for the two-qubit Bell state
|φ+⟩ = (|00⟩ + |11⟩)/

√
2, one may apply transposition

only on the second qubit. This map then gives

|φ+⟩⟨φ+| = 1
2

⎛

⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟⎟⎠

'→ I ⊗ T
(
|φ+⟩⟨φ+|

)
= 1

2

⎛

⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎠ , (32)

where the resulting global state turns out to have one
negative eigenvalue. Because of this property, transpo-
sition is not a completely positive map. This example
demonstrates that positivity, e.g. maintaining positive
eigenvalues of a single qubit state, does not imply com-
plete positivity, e.g. maintaining positive eigenvalues of
a two-qubit state when the map is only applied to one
qubit. The fact the ‘partial’ transposition is not positive
when the initial state is entangled is used extensively as a
criterion to detect entanglement [96].

CPTPmaps are related to dynamical equations, which
we discuss briefly.When the system is closed, and evolves
under a unitary V , the evolution of the density matrix is
given by ρ′ = VρV†. A more general description of the
transformations between states when the system is inter-
actingwith an external environment is givenbyLindblad-
type master equations. Such dynamics preserves trace
and positivity of the density matrix, while allowing the
density matrix to vary otherwise. Such equations have
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the general form

dρ
dt

= −i[H , ρ]+
∑

k

[
AkρA†

k − 1
2
A†
kAkρ − 1

2
ρAkA†

k

]
.

(33)

Here, Ak are Lindblad operators that describe the effect
of the interaction between the system and the environ-
ment on the system’s state. Notice that if an initial state
ρ(t = 0) is evolved to a final state ρ(t = T), then
the resulting transformation can be captured by a CPTP
map ,(ρ(t = 0)) = ρ(t = T). Master equations are
typically derived with many assumptions, including that
the system is weakly coupled to the environment and that
the environmental correlations decay sufficiently quickly
such that the initial state of the system is uncorrelated to
the environment. Lindblad-type master equations have
been extensively employed to the study of quantum en-
gines, and this connectionwill be discussed in Section 6.2.
Some master equations are not in the Lindblad form, see
[97] for example. We note that the structure of Equation
(33) arises naturally if Markovianity, trace preservation
of the density matrix and positivity are considered. To
see that this should be the case, consider the general
evolution step for the density matrix, which we write
without loss of generality as dρ = −(Mρ+ρN)dt. From
the Hermiticity of the density matrix, we have dρ† = dρ,
implying N = M†. We can hence be tempted to write an
evolution equation of the form dρ = −(Mρ + ρM†)dt.
If we write M = iH + J , this form does not preserve
trace for the terms involving J . This problem is fixed by
subtracting an appropriate term. If we write J = F†F,
then we can write a trace-preserving equation, namely:
dρ = −i[H , ρ]dt + (2FρF† − F†Fρ − ρF†F)dt, where
2FρF† ensures trace preservation. Writing the operator
F in an orthonormal basis and diagonalising the resulting
operator produces the general equation above. We note
that care has to be taken that the dynamical equation also
preserves positivity, see [95] for a detailed derivation.

4.1.1. Three theorems involving CPTPmaps
We now briefly mention three important theorems often
used in the quantum information theoretic study of ther-
modynamics. These theorems are the Stinespring dila-
tion theorem, the channel-state duality theorem and the
operator sum representation, respectively. The impor-
tance of these theorems lies in the alternative perspectives
they afford an abstract dynamical map. We mention the
theorems briefly, alongside a brief remark about the light
they shed on CPTP maps.

The first of these, Stinespring dilation theorem asserts
that every CPTP map , can be built up from three
fundamental operations, namely: tensor product with an

arbitrary environmental ancilla state, τE , a joint unitary
and a partial trace. This assertion is written as

ρ′ = ,(ρ) = trE[V ρ ⊗ τE V†]. (34)

Stinespring dilation allows for any generic quantum
dynamics of the system, S, to be thought of in terms
of a global unitary V acting on the system and an en-
vironment, E. If the interactions between the system and
the environment are known, then the time dependence
of the map may be specified. For instance, if the Hamil-
tonian governing the joint dynamics is HSE , then V =
VSE(t) := exp ( − iHSEt). However, Stinespring dilation
allows the mathematical analysis of many properties of
maps for general sets of unitaries. We note that many
quantum thermodynamics papers assume τE to be the
Gibbs state of the environment and use this to study,
e.g., the influence of temperature on the dynamics of the
quantum system which interacts with the environment.
For example, in [98], the authors considered thermali-
sation of a quantum system, a topic we will discuss in
Section 4.3. They prove a condition for the long time
states of a system to be independent of the initial state
of the system. This condition relies on smooth min- and
max-entropies which are defined below.

Another theorem used in [98] and other studies [99]
of quantum thermodynamics is the channel-state duality
or Choi–Jamiołkowski isomorphism. It says that there
is a state ρ, isomorphic to every CPTP map ,, given
by

ρ, := I ⊗,(|ϕ⟩⟨ϕ|), (35)

where |ϕ⟩ = (1/
√
d)
∑d

i |i⟩ ⊗ |i⟩ is a maximally en-
tangled bipartite state. The main purpose of this the-
orem is that it allows us to think of the CPTP map
, as a state ρ, which is often useful to make state-
ments about the amount of correlations generated by a
given CPTP map. For example, see [100] for a discus-
sion on entropic inequalities that employ this formal-
ism.

The final theorem is the operator sum representation,
which asserts that any map, which has the representation

ρ′ = ,(ρ) :=
∑

µ

Kµ ρK†
µ, (36)

with
∑

K†
µKµ = I, is completely positive (but not nec-

essarily trace preserving). These operators, often known
as Sudarshan–Kraus operators, are related to the ancilla
state τE and V in Equation (34). We note that these
theorems are often implicitly assumed while discussing
quantum thermodynamics from the standpoint of CPTP
maps, see [86,99,101] for examples.
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4.1.2. Entropy inequalities andmajorisation
We state key results from quantum information theory
relating to entropy often employed in studying thermo-
dynamics. Specifically, we discuss convexity, subadditiv-
ity, contractivity and majorisation. We begin by defining
quantum relative entropy as

S[ρ∥σ ] := tr[ρ ln ρ − ρ ln σ ]. (37)

Thenegative of the first term is the vonNeumann entropy
of the state ρ, see Section 2.1.

The relative entropy is jointly convex in both its inputs.
This means that if ρ = ∑

m pmρm and σ = ∑
m pmσm,

with pm probabilities then

S
[
ρ∥σ

]
≤
∑

k
pkS[ρk∥σk]. (38)

Furthermore, for any tripartite state ρABC defined over
three physical systems labelled A, B and C, the entropies
of various marginals are bounded by the inequality

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (39)

This inequality, known as the strong subadditivity in-
equality, is equivalent to the joint convexity of quantum
relative entropy and is used, for instance in [102], to
discuss area laws in quantum systems.

The quantum relative entropy is monotonic, or con-
tractive, under the application of CPTP maps. For any
two density matrices ρ and σ , this contractivity relation
[103] is written as

S[ρ∥σ ] ≥ S[,(ρ)∥,(σ )]. (40)

Contractivity is central to certain extensions of the second
law to entropy production inequalities, see [100,104–106]
and is also obeyedby trace distance. Therehas been recent
interest in improving these inequality laws in relation to
irreversibility of quantum dynamics [107–110].

Finally, majorisation is a quasi-ordering relationship
between two vectors. Consider two vectors x⃗ and y⃗, which
are n-dimensional. Often in the context of quantum ther-
modynamics, these vectors will be the eigenvalues of
density matrices. The vector x⃗ is said to majorise y⃗, writ-
ten as x⃗ ≻ y⃗, if all partial sums of the ordered vector
obey the inequality

∑k≤n
i x↓

i ≥ ∑k≤n
i y↓

i . Here, x⃗↓ is the
vector x⃗, sorted in descending order. A related idea is the
notion of thermo-majorisation [111]. Consider p(E, g) to
be the probability of a state ρ to be in a state g with
energy E. At a temperature β , such a state is β-ordered
if eβEkp(Ek, gk) ≥ eβEk−1p(Ek−1, gk−1), for k = {1, 2, . . .}.
If two states ρ and σ are such that β-ordered ρ majorises

β-ordered σ , then the state ρ can be transformed to σ in
the resource theoretic setting discussed in Section 5.

4.1.3. Smooth entropies
Smooth entropies are related to von Neumann entropy
defined in (8) and the conditional entropy used in Section
2.4. Smooth entropies are central in the single shot and
resource theoretic approaches to quantum thermody-
namics, presented in Section 5.

Let us consider a bipartite system, whose parties are
labelled A and B. The smooth entropies are defined in
terms ofmin- andmax-entropies conditioned onB, given
by

Smin(A|B)ρ := sup
σB

sup{λ ∈ R : 2−λIA ⊗ σB ≥ ρAB},

(41)

Smax(A|B)ρ := sup
σB

ln
[
F(ρAB, IA ⊗ σB)

]2
. (42)

Here, the supremum is over all states σB in the space
of subsystem B, and F(x, y) := ∥√x√y∥1, with ∥g∥1 :=
tr[
√
g†g] is the fidelity.Note thatwe retain standardnota-

tion here, employed, for instance, in standard textbooks
on quantum information theory [112]. The smoothed
versions of min-entropy, Sεmin, are defined as the maxi-
mum over the min-entropy Smin of all states σAB which
are in a radius (measured in terms of purified distance
[113]) of ε from ρAB. Likewise, Sεmax is defined as the
minimum Smax over all states in the radius ε. This can be
written as (see Chapter 4 in [23])

Sϵα(A)ρ :=

⎧
⎪⎨

⎪⎩

min
ρ̃

Sα(A)ρ̃ , if α < 1

max
ρ̃

Sα(A)ρ̃ , if α > 1, 0 ≤ ϵ < 1,
(43)

where ρ̃ ≈ε ρ are an ε-ball of states close to ρ. We note
that there is more than one smoothing procedure, and
care needs to be taken to not confuse them [98].

4.2. Role of fixed points in thermodynamics

Fixed points of CPTP maps play an important role in
quantum thermodynamics. This role is completely anal-
ogous to the role played by equilibrium states in equi-
librium thermodynamics. In equilibrium thermodynam-
ics, the equilibrium state is defined by the laws of ther-
modynamics. If two bodies are placed in contact with
each other, and can exchange energy, they will eventually
equilibrate to a unique state, see Section 4.3. On the
other hand, if the system of interest is not in thermal
equilibrium, notions such as equilibrium, temperature
and thermodynamic entropy are ill-defined. In the non-
equilibrium setting, [114] proposed a thermodynamic
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framework where the equilibrium state was replaced by
the fixed point of the map that generates the dynamics.
If the steady state of a particular dynamics is not the
thermal state, since there is entropy produced in the
steady state, ‘housekeeping heat’ was introduced as a way
of taking into account the deviation from equilibrium.
This programme, called ‘steady-state thermodynamics’
[114–116], for a classical system described by Langevin
equation is described in [116] and the connection to
fluctuation theorems is elaborated.

For a quantum system driven by a Lindblad equation
given in Equation (33), the fixed point is defined as the
steady state of the evolution. Such a steady state is fixed by
theHamiltonian and the Lindblad operators that describe
the dynamics. If a system whose steady state is an equi-
librium state is taken out of equilibrium, the system will
relax back to equilibrium.This relaxationmechanismwill
be accompanied by a certain entropy production, which
ceases once the system stops evolving (this can be an
asymptotic process). In the non-equilibrium setting, let
the given dynamics be described by a CPTPmap,. Such
a map is a sufficient description of the dynamical pro-
cesses of interest to us. Every such map, , is guaranteed
to have at least one fixed point [117], which we refer to
as ρ⋆. If we compare the relative entropy S[ρ∥ρ⋆] before
and after the application of the map ,, then this quan-
tity reduces monotonically with the application of the
CPTP map,. This is because of contractivity inequality,
given by Equation (40). Since the entropy production
ceases only when the state reaches the fixed point ρ⋆, we
can compare an arbitrary initial state ρ with the fixed
point to study the deviation from steady-state dynamics.
Using this substitution, the contractivity inequality can
be rewritten as a difference of von Neumann entropies,
namely

S[,[ρ]] − S[ρ] ≥ −tr
[
,[ρ] ln ρ⋆ − ρ ln ρ⋆

]
:= −ς.

(44)

This result [104,118] states that the entropy production
is bounded by the term on the right-hand side, a factor
which depends on the initial density matrix and the map.
IfNmaps,i are applied in succession to an initial density
matrix ρ, the total entropy change can be shown easily
[105] to be bounded by

S[,[ρ]] − S[ρ] ≥ −
N∑

k=1
ςk. (45)

Here, , is the concatenation of the maps , := ,N ◦
,N−1 ◦ . . .◦,1. We refer the reader to [70,105,119–121]
for a discussion of the relationship between steady states
and laws of thermodynamics and [122] for a discussion
on limit cycles for quantum engines. In [123], the authors

use the CP formalismdescribed here to derive fluctuation
relations discussed in Section (3.3).

4.3. Thermalisation of closed quantum systems

One of the fundamental problems in physics involves
understanding the route from microscopic to macro-
scopic dynamics. Most microscopic descriptions of
physical reality, for instance, are based on laws that are
time-reversal invariant [124]. Such symmetries play a
strong role in the construction of dynamical descrip-
tions at the microscopic level, but many problems persist
when the derivation of thermodynamic laws is attempted
from quantum mechanical laws. In this subsection, we
highlight some examples of the problems considered and
introduce the reader to some important ideas.We refer to
three excellent reviews [125–127] for a detailed overview
of the field.

An information theoretic example of the foundational
problems in deriving thermodynamics involves the log-
ical paradox in reconciling the foundations of thermo-
dynamics with those of quantum mechanics. Suppose
we want to describe the universe, consisting of system
S and environment E. From the stand point of quantum
mechanics, then we would assign this universe a pure
state, commensurate with the (tautologically) isolated
nature of the universe. This wave function is constrained
by the constant energy of the universe.On the other hand,
if we thought of the universe as a closed system, from the
standpoint of statistical mechanics, we assume the axiom
of ‘equal a priori probability’ to hold. By this, we mean
that each configuration commensurate with the energy
constraint must be equally probable. Hence, we expect
the universe to be in a maximally mixed state in the
given energy shell. This can be thought of as a Bayesian
[128] approach to states in a given energy shell. This is in
contradiction with the assumption made about isolated
quantum systems, namely: that states of such isolated
systems are pure states. In [7], the authors resolved this by
pointing out that entanglement is the key to understand-
ing the resolution to this paradox. They replace the axiom
of equal a priori probability with a provable statement
known as the ‘general canonical principle’. This principle
can be stated as follows: if the state of the universe is a
pure state |φ⟩, then the reduced state of the system

ρS := trE[|φ⟩⟨φ|] (46)

is very close (in trace distance, see Section 4) to the state
4S for almost all choices of the pure state |φ⟩. The phrase
‘almost all’ can be quantified into the notion of typicality,
see [7]. The state 4S is the canonical state, defined as
4S := trE(E), the partial reduction of the equiprobable
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state E corresponding to the maximally mixed state in a
shell (or subspace) corresponding to a general restriction.
An example of such a restriction is the constant energy
restriction, and hence the ‘shell’ corresponds to the sub-
space of states with the same energy. Since this applies to
any restriction, and not just the energy shell restriction
wemotivated our discussion with, the principle is known
as the general canonical principle.

The intuition here is that almost any pure state of
the universe is consistent with the system of interest
being close to the canonical state, and hence the axiom
of equal a priori probability is modified to note that the
system cannot tell the difference between the universe
being pure or mixed for a sufficiently large universe. We
emphasise that though almost all pure states have a lot of
entanglement across any cut (i.e. across any number of
parties you choose in each subsystem and any number of
subsystems you divide the universe into), not all states
do. A simple example of this is product states of the
form |ψ1⟩ ⊗ |ψ2⟩ . . . |ψN ⟩. Entanglement between the
subsystems is understood to play an important role in
this kinematic (see below) description of thermalisation,
leading to the effect that sufficiently small subsystems
are unable to distinguish highly entangled states from
maximally mixed states of the universe, see [15,129,130]
for related works.

This issue of initial states is only one of themany topics
of investigation in thismodern study of equilibration and
thermalisation [131].When thermalisation of a quantum
system is considered, it is generally expected that the
system will thermalise for any initial condition of the
system (i.e. for ‘almost all’ initial states of the system,
the system will end up in a thermal state) and that many
(but perhaps not all) macroscopic observables will ‘ther-
malise’ (i.e. their expectation values will saturate to values
predicted from thermal states, apart from infrequent re-
currences and fluctuations). Let us consider this issue of
the thermalisation ofmacroscopic observables in a closed
quantum system. Let the initial state of the system be
given by |φ⟩ = ∑

k ck|6k⟩, where the |6k⟩ are the energy
eigenstates of the Hamiltonian, with energies assumed
non-degenerate. The corresponding coefficients ck are
non-zero only in a small band around a given energy
E0. If we consider an observable B, its expectation value
in the time evolving state is given by

⟨φ|eiHtBe−iHt |φ⟩ := ⟨B⟩ =
∑

k
|ck|2Bkk+

∑

km
c∗mcke

i[Em−Ek]tBkm, (47)

where Bkm := ⟨6m|B|6k⟩. The long time average of this
expectation value is given by the first term and is expected

to thermalise if this represents a model of thermalisation.
But from the axioms of the micro-canonical ensemble,
the expectation value is expected to be proportional to∑

k Bkk, in keeping with equal ‘a priori probability’ about
the mean energy E0. This is a source of mystery since
the long time average

∑
k |ck|2Bkk somehow needs to

‘forget’ about the initial state of the system |φ⟩, given
by coefficients ck.

This can happen in three ways. The first mechanism is
to demand that Bkk be non-zero only in the narrow band
discussed above and come outside the sum. This is called
‘eigenstate thermalisation hypothesis’ (ETH) [132,133],
see [26] for more details on ETH. The second method
to reconcile the long time average with the axiom of the
micro-canonical ensemble is to demand that the coeffi-
cients ck can be constant and non-zero for a subset of
indices k. The third mechanism for the independence of
the long time average of expectation values of observ-
ables, and hence the observation of thermalisation in a
closed quantum system is to demand that the coefficients
ck be uncorrelated to Bkk. This causes ck to uniformly
sample Bkk the average given simply by the mean value,
in agreement with the micro-canonical ensemble. ETH
was numerically verified for hardcore bosons in [133]
and we refer the interested reader to a review of the field
in [25], see [134,135] for a geometric approach to the
discussion of thermodynamics and thermalisation.

An integrable system is defined as a system where the
number of conserved local quantities grows extensively.
Here, the notions of local and global are with respect to
the constituent subsystems. We write local to differen-
tiate quantities such as eigenstates of the Hamiltonian,
which commute with the Hamiltonian but are usually
global. Consider the eigenvalues of such an integrable
system, which are then perturbed with a non-integrable
Hamiltonian perturbation. Since equilibration happens
by a system exploring all possible transitions allowed
between its various states, any restriction to the set of all
allowed transitions will have an effect on equilibration.
Since there are a number of conserved local quantities
implied by the integrability of a quantum system, such a
quantum system is not expected to thermalise. (We note
that this is one of the many definitions of thermalisation
and it has been criticised as being inadequate [136], see
also Section 9 of [26] for a detailed criticism of various
definitions of thermalisation). On the other hand, the
absence of integrability is no guarantee for thermalisation
[137]. Furthermore, if an integrable quantum system is
perturbed so as to break integrability slightly, then the
various invariants are assumed to approximately hold.
Hence, the intuition is that there should be some gap
(in the perturbation parameter) between the breaking of
integrability and the onset of thermalisation. This phe-
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Figure 6. Energy levels are indicated by the black lines, populations of levels are indicated as red columns. (a) LTs of the Hamiltonian
change only the energy levels while the populations of the levels remain the same. The energy levels can be chosen such that the
initial probabilities correspond to thermal probabilities for a given temperature. (b) ‘Thermalisation’ of the population with respect to
the energy levels resulting in the Gibbs state. (c) An isothermal reversible transformation (ITR) changing both the Hamiltonian’s energy
levels and the state population to remain thermal throughout the process. (Figures taken from Nat. Commun. 4, 1925 (2013).) (d) No
level transfer is assumed during LTs with the energy change from level E(0)

n corresponding to initial Hamiltonian H = H(0) to E(1)
n

corresponding to changed Hamiltonian H(1) associated with single shot work. Level transfers during thermalisation are assumed to end
with thermal probabilities in each of the energy eigenstates E(1)

m1 of the same Hamiltonian H(1), with the energy difference between E(1)
n

and E(1)
m1 identified as single shot heat. An ITR is a sequence of infinitesimal small steps of LTs and thermalisations, here, resulting in the

system in an energy E(1)
mN after N − 1 steps.

nomenon is called pre-thermalisation, and owing to the
invariants, such systems which are perturbed out of in-
tegrability settle into a quasi-steady state [138]. This is a
result of the interplay between thermalisation and inte-
grability [139] and was experimentally observed in [140].

5. Single shot thermodynamics

The single shot regime refers to operating on a single
quantum system, which can be a highly correlated system
of many subsystems, rather than on an infinite ensemble
of identical and independently distributed copies of a
quantum system, often referred to as the i.i.d. regime
[96]. For long, the issue of whether information theory
and hence physics can be formulated reasonably in the
single shot regime has been an important open question
which has only been addressed in the last decade, see e.g.
[141]. An active programme of applying quantum infor-
mation theory techniques, in particular the properties of
CPTP maps discussed in Section 4, to thermodynamics
is the extension of the laws and protocols applicable to
thermodynamically large systems to ensembles of finite
size that in addition may host quantum properties. Finite
size systems typically deviate from the assumptionsmade
in the context of equilibrium thermodynamics and there
has been a large interest in identifying limits of work
extraction from such small quantum systems.

5.1. Work extraction in single shot thermodynamics

One single shot thermodynamics approach to analyse
how much work may be extracted from a system in a
classical, diagonal distribution ρ with HamiltonianH in-
troduces level transformations (LTs) of theHamiltonian’s
energy eigenvalues while leaving the state unchanged and

thermalisation steps where the Hamiltonian is held fixed
and the system equilibrates with a bath at temperature
T to a thermal state [142]. Let the initial Hamiltonian
be H = ∑

k,gk E
(0)
k |E(0)

k , gk⟩⟨E(0)
k , gk| where E(0)

k are the
energy eigenvalues and |E(0)

k , gk⟩ the corresponding de-
generate energy eigenstates, labelled with the degeneracy
index gk. For the system starting with energy E(0)

n , the
energy change during LTs, E(0)

n → E(1)
n see Figure 6(d), is

entirely associated with single shot work while the energy
change, E(1)

m1 → E(2)
m2 see Figure 6(d), for thermalisation

steps is associated with single shot heat [142]. See also
the definition of average work and average heat in Equa-
tion (2) associated with these processes for ensembles
[32]. Through a sequence of LTs and thermalisations, see
Figure 6(a)–(c), it is found that the single shot random
work yield of a system with diagonal distribution ρ and
Hamiltonian H is [142]

Wyield = kB T ln
rn
tn

. (48)

Here, rn and tn are energy-level populations of ρ and the
thermal state, τ := e−βH

Z , respectively, which are both
diagonal in the Hamiltonian’s eigenbasis. The particular
index n appearing here refers to the initial energy state
|E(0)

n , gn⟩ that the system happens to start with in a ran-
dom single shot, see Figure 6(d). Averaging the single
shot work in Equation (48) with the probability rn of
obtaining it, gives the average work yield A(ρ,H) =
F(ρ) − F(τ ) as expected from Equation (7), where the
free energy F is defined in Equation (6).

Deterministic work extraction is rarely possible in the
single shot setting and proofs typically allow a non-zero
probability ϵ of failing to extract work in the construction
of single shot work. The ϵ-deterministic work content
Aϵ(ρ,H) is found to be [142]
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Figure 7. Left (a) Work in classical thermodynamics is identified with lifting a bucket against gravity, thus raising its potential energy. (b)
In the quantum thermodynamic resource theory, a work bit, i.e. a quantum version of a bucket, is introduced where the jump from one
energetic level to another defines the extracted work during the process. In the text, the lower level is denoted as |0⟩W , i.e. the ground
state with energy 0 and the excited state is |w⟩W with energy w. (Figure taken from Nat. Commun. 4 2059 (2013).) Right: Global energy
levels of combined system, bath and work storage system have a high degeneracy indicated by the sets of levels all in the same energy
shell, E . The resource theory approach to work extraction [111] allows a global system starting in a particular energy state made up of
energies E = ES + EB + 0, indicated in red, to be moved to a final state made up of energies E = E ′

S + E ′
B + w, indicated in blue, in the

same energy shell, E . Work extraction now becomes an optimisation problem to squeeze the population of the initial state into the final
state and find the maximum possiblew [149].

Aϵ(ρ,H) ≈ Fϵ(ρ,H) − F(τ ) := −kB T ln
Z7∗(ρ,H)

Z
,

(49)

with the free energy difference defined through a ratio of a
subspace partition functionZ7∗ over the full thermal par-
tition function Z. Here, Z7∗(ρ,H) := ∑

(E,g)∈7∗ e−βE is
the partition function for the minimal subspace
7∗(ρ,H) := inf {7 : ∑(E,g)∈7⟨E, g |ρ|E, g⟩ > 1 − ϵ}
defined such that the stateρ’s probability in that subspace
makes up the total required probability of 1 − ϵ.

As an example consider an initial stateρwithprobabil-
ities (5/15, 4/15, 1/15, 2/15, 3/15, 0) for non-degenerate
energies (0E, 1E, 2E, 3E, 4E, 5E) for E > 0 and assume
that the allowed error is ϵ = 1/10. The thermal partition
function is Z = e−β0+e−β1E+e−β2E+e−β3E+e−β4E+
e−β5E . The subspace partition function is then Z7∗ =
e−β0+e−β1E+e−β3E+e−β4E including the thermal terms
for the most populated energies until the corresponding
state probability is at least 1 − 1/10, i.e. p0E,1E,3E,4E =
14/15 ≥ 1 − 1/10.

The proof of Equation (49) employs a variation of
Crook’s relation, see Section 3.2, and relies on the notion
of smooth entropies, see Section 4.1. Contrastingwith the
ensemble situation that allows probabilistic fluctuations
P(W) around the averagework, see e.g. Equation (17), the
single shot work Aϵ(ρ,H) discussed here is interpreted
as the amount of ordered energy, i.e. energy with no
fluctuations, that can be extracted from a distribution
in a single shot setting.

5.2. Work extraction andwork of formation in
thermodynamic resource theory

An alternative single shot approach is the resource the-
ory approach to quantum thermodynamics [143], where

recent contributions include references [9,111,142,144–
148]. Resource theories in quantum information identify
a set of restrictive operations that can act on ‘valuable
resource states’. For a given initial state, these restrictive
operations then define a set of states that are reachable.
For example, applying stochastic local operations assisted
by classical communication (SLOCC) on an initial prod-
uct state of two parties will produce a restricted, separable
set of two-party states. The same SLOCC operations ap-
plied to a two-party Bell state will result in the entire
state space for two parties, thus the Bell state is a ‘valu-
able resource’. In the thermodynamic resource theory,
the valuable resource states are non-equilibrium states
while the restrictive operations include thermal states of
auxiliary systems.

The thermodynamic resource theory setting involves
three components: the system of interest, S, a bath B
and a weight (or work storage system or battery) W .
Additional auxiliary systems may also be included [146]
to explicitly model the energy exchange that causes the
timedependence of the systemHamiltonian, cf. Section3,
and tomodel catalytic participants in thermal operations,
see Section 5.3. In the simplest case, the Hamiltonian at
the start and the end of the process is assumed to be the
same and the sumof the three local terms,H = HS+HB+
HW . Thermal operations are those transformations of the
system that can be generated by a global unitary, V , that
acts on system, bath andwork storage system initially in a
product stateρS⊗τB⊗|EiniW ⟩W ⟨EiniW |, where thework stor-
age system starts in one of its energy eigenstates, |EiniW ⟩,
and the bath in a thermal state, τB = e−βHB

ZB , which is
considered a ‘free resource’. The non-trivial resource for
the process is the non-equilibrium state of the system, ρS.
Perfect energy conservation is imposed by requiring that
the unitary may only induce transitions within energy
shells of total energy E = ES + EB + EW , see Figure 7(b).
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This is equivalent to requiring thatV must commutewith
the sum of the three local Hamiltonians.

A key result in this setting is the identification of a
maximal work [111] that can be extracted from a single
system starting in a diagonal non-equilibrium state ρS to
the work storage system under thermal operations. The
desired thermal transformation, ρS ⊗ τB ⊗ |0⟩W ⟨0| V−→
σSB ⊗ |w⟩W ⟨w|, enables the lifting of the work storage
system by an energyw > 0 from the ground state |EiniW ⟩ =
|0⟩W to another single energy level |w⟩W , see Figure 7(a).
Here, the system and bath start in a product state andmay
end in a correlated state σSB. The perfect transformation
can be relaxed by requesting the transformation to be
successful with probability 1 − ϵ, see Section 5.1. The
maximum extractable work in this setting is then [111,
149]

wmax
ϵ = − 1

β
ln
∑

ES ,gS

t(ES ,gS) hρS(ES, gS, ϵ)

=: Fmin
ϵ (ρS) − F(τS), (50)

where τS is the thermal state of the system at the bath’s
inverse temperature β with eigenvalues t(ES ,gS) = e−βES

ZS
and partition function ZS = ∑

ES ,gS e
−βES . Here, ES and

gS refer to the energy and degeneracy index of the eigen-
states |ES, gS⟩ of the Hamiltonian HS. hρS(ES, gS, ϵ) is a
binary function that leads to either including or exclud-
ing a particular t(ES , gS) in the summation, see [111,149]
for details. Comparing with the result in Equation (49)
derived with the single shot approach discussed above,
one notices that the ratio Z7∗/Z is just the sum given
in (50), i.e. Z7∗/Z = ∑

ES ,gS t(ES ,gS) hρS(ES, gS, ϵ) and the
expressions for the extractable work coincide.

For non-zero ϵ, the derivation can no longer rely on
the picture of lifting the work storage system from its
ground state to a pure excited state. A more general
mixed work storage system state is used in [150] and
a general link between the uncertainty arising from the
ϵ-probabilities and the fluctuations in work as discussed
in Section 3.5 is derived. This approach recovers the
results, Equations (49) and (50), as the lower bounds on
the extractable work. When extending the single-level
transitions of the work storage system to multiple levels
[149], it becomes apparent that this resource theory work
cannot directly be compared to lifting aweight to a certain
height or above. Allowing the weight to rise to an energy
level |w⟩W or a range of higher energy levels turns the
problem into a new optimisation and that would have a
different associated ‘work value’, w′, contrary to physical
intuition. Due to its restriction to a particular energetic
transition, the above resource theory work may very well
be a useful concept for resonance processes where such a
restriction is crucial [149].

Similar to the asymmetry between distillable entangle-
ment and entanglement of formation, it is also possible
to derive a work of formation to create a diagonal non-
equilibrium state ρS which is in general smaller than the
maximum extractable work derived above [111],

wmin
(
formation

)

ϵ = 1
β
inf
ρϵS

(
ln min{λ : ρϵS ≤ λτS}

)
,

(51)

where ρϵS are states close to ρS, ||ρϵS − ρS|| ≤ ϵ with || · ||
the trace norm.

5.3. Single shot second laws

Beyond optimising work extraction, a recent paper iden-
tifies the set of all states that can be reached in a single shot
by a broader class of thermal operations in the resource
theory setting [146]. This broader class of operations,
EC , is called catalytic thermal operations and involves, in
addition to a system S (which here may include the work
storage system) and a heat bath, B, a catalystC [151]. The
role of the catalyst is to participate in the operation while
starting and being returned uncorrelated to system and
bath, and in the same state σC ,

EC(ρS) ⊗ σC := trB[V (ρS ⊗ τB ⊗ σC)V†]. (52)

The unitary nowmust commutewith the sumof the three
Hamiltonians that the system, bath and catalyst start and
end with, [V ,HS +HB +HC] = 0. Note that the map EC
on the system state depends upon the catalyst state σC .
For system states ρS diagonal in the energy basis ofHS, it
is shown [146] that a state transfer under catalytic thermal
operations is possible only under a family of necessary and
sufficient conditions,

ρS → ρ′
S = EC(ρS)

⇔ ∀α ≥ 0 : Fα(ρS, τS) ≥ Fα(ρ′
S, τS), (53)

where τS is the thermal state of the system. τS is the
fixed point of the map EC and the proof makes use of
the contractivity of map, discussed in Section 4.1. Here,
Fα(ρS, τS) := kB T

(
Sα(ρS||τS) − lnZS

)
is a family of free

energies defined through the α-relative Renyi entropies,
Sα(ρS||τS) := sgn(α)

α−1 ln
∑

n rαn t1−αn , applicable for states
diagonal in the same basis. The rn and tn are the eigen-
values of ρS and τS corresponding to energy eigenstates
|En, gn⟩ of the system, cf. Equation (48). An extension of
these laws to non-diagonal system states and including
changes of the Hamiltonian is also discussed [146].

The resulting continuous family of second laws can
be understood as limiting state transfer in the single
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shot regime in a more restrictive way than the limita-
tion enforced by the standard second law of thermody-
namics, Equation (5), valid for macroscopic ensembles
[146], see Section 2. Indeed, the latter is included in the
family of second laws: for limα→1 where Sα(ρS||τS) →
S1(ρS||τS) = ∑

n rn ln
rn
tn [23], one recovers from Equa-

tion (53) the standard second law,

kB T

(
∑

n
rn ln

rn
tn

− lnZS

)

≥kB T

(
∑

n
r′n ln

r′n
tn

− lnZS

)

,

(54)
∑

n
rn ln rn −

∑

n
r′n ln r

′
n ≥ −

∑

n
(r′n − rn) ln tn,

(55)
#S ≥ β#U = β⟨Q⟩, (56)

with no work contribution, ⟨W⟩ = 0, as no explicit
source of work was separated here (although this can
be done, see Section 5.2). Moreover, in the limit of large
ensembles and for systems that are not highly correlated,
the Renyi free energies reduce to the standard Helmholtz
free energy, Fα(ρS, τS) ≈ F1(ρS, τS) for all α, providing
a single shot explanation of why Equation (5) is the only
second law relation for macroscopic ensembles.

Allowing the catalyst in Equation (52) to be returned
after the operation not in the identical state, but a state
close in trace distance, leads to the rather unphysical puz-
zle of thermal embezzling: a large set of transformations
are allowed without the usual second law restrictions.
This puzzle has been tamed by recent results showing that
when physical constraints, such as fixing the dimension
and the energy-level structure of the catalyst, are incorpo-
rated, the allowed state transformations are significantly
restricted [152].

5.4. Single shot second lawswith coherence

Recently, it was discovered that thermal operations,
E(ρS) := trB[V (ρS ⊗ τB)V†], on an initial state ρS that
has coherences (i.e. non-zero off-diagonals) with respect
to the energy eigenbasis of the Hamiltonian HS, require
a second family of inequalities to be satisfied [148], in
addition to the free energy relations for diagonal states
(53). The derived necessary conditions are

ρS → ρ′
S = E(ρS) ⇒ ∀α ≥ 0 : Aα(ρS) ≥ Aα(ρ′

S),
(57)

where Aα(ρS) = Sα(ρS||DHS(ρS)) and DHS(ρS) is the
operation that removes all coherences between energy
eigenspaces, i.e. DH(ρ) ≡ η in Section 2.6. The Aα are
coherence measures, i.e. they are coherence monotones
for thermal operations. The proof of (57) relies again on

Figure 8. For a fixed Hamiltonian HS and temperature T , the
manifold of time symmetric states, indicated in grey, including
the thermal state, γ ≡ τS , as well as any diagonal state, D(ρ) ≡
DHS (ρS), is a submanifold of the space of all system states (blue
oval). Under thermal operations, an initial state ρ ≡ ρS moves
towards the thermal state in two independent ‘directions’. The
thermodynamic purity p measured by Fα and the asymmetry a
measured by Aα must both decrease. (Figure taken from Nat.
Commun. 6, 6383 (2015).)

the contractivity of the relative entropy with respect to
the map E , see Section 4.1, and its commuting with D. It
is noted that (57) provides necessary conditions only – it
is not known if the conditions on theAα(ρ′

S) are sufficient
for a thermal operation to exist that turns ρS into ρ′

S.
The conditions (57) mean that thermal operations on

a single copy of a quantum state with coherence must
decrease their coherence, just like free energy must de-
crease for diagonal non-equilibrium states. The two fam-
ilies of second laws (53) and (57) can be interpreted
geometrically as moving states in state space under ther-
mal operations ‘closer’(the Renyi divergences Sα are not
proper distance measures [23]) to the thermal state in
two independent ‘directions’, in thermodynamic purity
and time asymmetry [148], see Figure 8. The decrease of
coherence implies a quantum aspect to irreversibility in
the resource theory setting [153]. Again, when taking the
single shot results to the macroscopic limit, ρ → ρ⊗N ,
conditions (57) become trivial and the standard second
law (5) is recovered as the only constraint.

6. Quantum thermal machines

Until now, we have discussed fundamental issues in
quantum thermodynamics. Thermodynamics is a field
whose focus from the very beginning has been both fun-
damental as well as applied. Applications of thermody-
namics are mostly in designing thermal machines, which
extract useful work from thermal baths. Examples of this
are engines and refrigerators. In Section 2, we discussed
work that can be extracted from correlations and from
coherences in the energy eigenbasis. These coherences
and correlations hence affect cyclical and non-cyclical
machine operations and contribute towards the quantum
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features of thermalmachine design. Here, we will present
some of the recent progress in the design of quantum
thermal machines that apply these aforementioned prin-
ciples, which generalise classical machines. We will focus
on two main types of QTMs. The first are cyclical ma-
chines which are quantum generalisations of engines and
refrigerators. The second type are non-cyclical machines,
which highlight important aspects of QTMs such as work
extraction, power generation and correlations between
subsystems.

6.1. Quantum thermalmachines

The study of the efficient conversion of various forms of
energy to mechanical energy has been a topic of interest
for more than a century. QTMs, defined as quantum
machines that convert heat to useful forms of work, have
been a topic of intense study. Engines, heat-driven re-
frigerators, power-driven refrigerators and several other
kinds of thermalmachines have been studied in the quan-
tum regime, initially motivated from areas such as quan-
tum optics [10,11]. QTMs can be classified in various
ways. Dynamically, QTMs can be classified as those that
operate in discrete strokes, and those that operate as
continuous devices, where the steady state of the con-
tinuous time device operates as a QTM. Furthermore,
such continuous engines can be further classified as those
that employ linear response techniques [14] and those
that employ dynamical equation techniques [24]. These
models of quantumengines are in contrastwithbiological
motors that extract work fromfluctuations and have been
studied extensively [154].

Engines use a working fluid and two (or more) reser-
voirs to transform heat to work. These reservoirs model
the bath that inputs energy into the working fluid (hot
bath) and another that accepts energy from the working
fluid (cold bath). Two main classes of quantum systems
have been studied as working fluids, namely: discrete
quantum systems and continuous variable quantum sys-
tems [155–158]. This study of continuous variable sys-
tems complements various models of finite level-systems
[159,160] and hybrid models [161,162] studied as quan-
tum engines. Both continuous variablemodels of engines
and finite dimensional heat engines have been theoreti-
cally shown to be operable at theoretical maximal effi-
ciencies. Such efficiencies are only well defined once the
engine operation is specified.

The efficiency of any engine is given by the ratio of the
net work done by the system to the heat that flows into
the system, namely

η = ⟨Wnet⟩
⟨Qin⟩

. (58)

From standard thermodynamics, it is well known that
the most efficient engines also output zero power since
they are quasi-static. Hence, for the operation of a real
engine, other objective functions such as power have to
be optimised. The seminal paper by Curzon and Ahlborn
[163] considered the issue of the efficiency of a classical
Carnot engine operating between two temperatures, cold
TC and hot TH , at maximum power, which they found to
be

ηCA = 1 −
√
TC
TH

. (59)

This limit is also reproduced with quantum working flu-
ids, as discussed in Section 6.8. We note that the afore-
mentioned formula for the efficiency at maximum power
is sensitive to the constraints on the system, and changing
the constraints changes this formula. For instance, see
[164,165] for results generalising the Curzon–Ahlborn
efficiency to stochastic thermodynamics and to quantum
systems with other constraints.

The rest of this section is a brief description of how
engines are designed in thequantumregime.Weconsider
three examples, namely: Carnot engines with spins as
the working fluid, harmonic oscillator Otto engines and
Diesel engines operating with a particle in a box as the
working fluid. These examples were chosen to illustrate
the design of a variety of engines operating with a variety
of quantum working fluids.

6.2. Carnot engine

Classically, the Carnot engine consists of two sets of
alternating adiabatic strokes and isothermal strokes. The
quantum analogue of the Carnot engine consists of a
working fluid, which can be a particle in a box [166],
qubits [18,159], multiple-level atoms [157] or harmonic
oscillators [155,156]. We emphasise that for all such en-
gines, the efficiency of the engine is strictly bounded by
the Carnot efficiency [167]. For the engine consisting of
non-interacting qubits considered in [159], the Carnot
cycle consists of

(1) Adiabatic Expansion: An expansion wherein the
spin is uncoupled from any heat baths and its
frequency is changed from ω1 to ω2 > ω1 adia-
batically. Work is done by the spin in this step due
to a change in the internal energy. Since the spin is
uncoupled, its vonNeumann entropy is conserved
in this expansion stroke.

(2) Cold Isotherm: The spin is coupled to a cold bath at
inverse temperature βC . This transfers heat from
the engine to the cold bath.
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(3) Adiabatic Compression: A compression stroke
where the spin is uncoupled from all heat baths
and its frequency is changed from ω3 to ω4 adi-
abatically. Work is done on the medium in this
step.

(4) Hot Isotherm: The spin is coupled to a hot bath at
inverse temperature βH < βC . This transfers heat
to the engine from the hot bath.

The inverse temperature β ′ of the thermal state of this
working fluid is given at any point (ω, S) on the cycle, by
the magnetisation relation S = − tanh (β ′ω/2)/2. The
dynamics is described by a Lindblad equation, which will
then be used to derive the behaviour of heat currents. The
engine cycle is described in Figure 9. The Hamiltonian
describing the dynamics is given by H(t) = ω(t)σ3/2.
The Heisenberg equation of motion is written in terms
ofLD(σ3), the Lindblad operators describing coupling to
the baths at inverse temperaturesβH andβC , respectively.
This equation can be used to calculate the expectation
value of the Hamiltonian ⟨H(t)⟩, which leads to

d⟨H(t)⟩
dt

= 1
2

(
dω
dt

⟨σ3⟩ + ω⟨LD(σ3)⟩
)

= 1
2

(
dω
dt

⟨σ3⟩ + ω
d⟨σ3⟩
dt

)
. (60)

As described in Section 2, the definition of work ⟨δW⟩ =
⟨σ3⟩δω/2 and heat ⟨δQ⟩ = ωδ⟨σ3⟩/2 emerges naturally
from the above discussion, and is identified with the
time derivative of the first law. For this quantum Carnot
engine, the maximal efficiency which is that of the
reversible engine [159] is given by the standard formula
namely

ηCarnot = 1 − TC
TH

. (61)

6.3. Otto engine

As a counterpoint to the Lindblad study of Carnot
engines implemented via qubits, let us consider the har-
monic oscillator implementation ofOtto engines [12,158,
168–170] whose time-dependent frequency of the har-
monic oscillator working fluid isωHO(t). The initial state
of the oscillator is a thermal state at inverse temperature
βC, and the oscillator frequency is ωHO

1 . The four strokes
of the Otto cycle are given by:

(1) Adiabatic Compression: An compression, where
the medium is uncoupled from all heat baths and
its frequency is changed fromωHO

1 toωHO
2 > ωHO

1 .
Since the oscillator is uncoupled, its vonNeumann
entropy is conserved during this stroke, though it
no longer is a thermal state.

(2) Hot Isochore: At frequency ωHO
2 , the harmonic

oscillator working fluid is coupled to a bath whose
inverse temperature is βH, and is allowed to relax
to the new thermal state.

(3) Adiabatic Expansion: In this stroke, themedium is
uncoupled from any heat baths and its frequency
is changed from ωHO

2 to ωHO
1 .

(4) Cold Isochore: At frequency ωHO
1 , the harmonic

oscillator working fluid is coupled to a bath whose
inverse temperature is βC and it is allowed to relax
back to its initial thermal state.

In the two strokes where the frequencies change, work
is exchanged. In the two thermalizing strokes on the other
hand, only heat is exchanged. Hence the efficiency is
easily calculated to be

ηOtto = −⟨δW⟩1 + ⟨δW⟩3
⟨δQ⟩2

. (62)

The experimental implementation of such a quantum
Otto engine was considered in [168,171] and is presented
in Figure 10. The Paul or quadrupole trap uses rapidly
oscillating electromagnetic fields to confine ions using
an effectively repulsive field. The ion, trapped in the
modified trap, presented in Figure 10 is initially cooled
in all spatial directions. The engine is coupled to hot
and cold reservoirs composed of blue and red detuned
laser beams. The tapered design of the trap translates to
an axial force that the ion experiences. A change in the
temperature of the radial state of the ion, and hence the
width of its spatial distribution, leads to amodification of
the axial component of the repelling force. Thus, heating
and cooling the ion move it back and forth along the
trap axis, as induced in the right-hand side of the figure.
The frequency of the oscillator is controlled by the trap
parameters. Energy is stored in the axial mode and can
be transferred to other systems and used.

Sincewe have considered anOtto engine operating be-
tween two thermal baths, we should not be surprised that
the standard formula for efficiency still applies.
Making one of the components of the engine genuinely
non-thermal (and quantum) makes the analysis more
interesting. In [171], the authors show that the stan-
dard Carnot efficiency can be overcome by squeezing
the thermal baths. In [172], the authors derive a ‘gen-
eralised’ Carnot efficiency that correctly accounts for the
first and second laws. Using this analysis, they demon-
strate that though the engine efficiency exceeds the stan-
dard Carnot formula, the ‘generalized’ efficiency is not
exceeded, in keeping with the laws of thermodynamics
[173].We note that the cost of squeezing the bath has not
been accounted for, similar to how the cost of preparing a



CONTEMPORARY PHYSICS 567

Figure 9. The left figure is a reversible Carnot cycle, operating in the limit ω̇ → 0, depicted in the space of the normalised magnetic
field ω and the magnetisation S. The horizontal lines represent adiabats wherein the engine is uncoupled from the heat baths and the
magnetic field is changed between two values. The lines connecting the two horizontal strokes constitute changing the magnetisation
by changing ω while the qubits are connected to a heat bath at constant temperature. We note that in the figure, S1,2 < 0 represent
two values of the magnetisation, with S1 < S2. Figure taken from [159]. The right figure is a particle in a box with engine strokes being
defined in terms of expansion and contraction of the box. This defines a quantum isobaric process, by defining force. This definition is
used to define a Diesel cycle in the text. We note that in the figure force is denoted by F , while it’s denoted by F in the text. Figure taken
from [175]. Figures reproduced with permission.

cold bath is unaccounted for in classical thermodynamics
(it is assumed that the baths are free resources).
6.4. Diesel engine

Finally, we discuss Diesel cycles designed with a particle
in a box as the working fluid [175]. The classical Diesel
engine is composed of isobaric strokes, where the pres-
sure is held constant. We will discuss how the notion
of ‘pressure’ is generalised to the quantum setting and
how this defines a ‘quantum isobaric’ stroke. To define
pressure, we begin by defining force. After defining av-
erage work and heat as before, generalised forces can be
defined by analogy with classical thermodynamics using
the relation

Yn = ⟨δW⟩
δyn

, (63)

where yn,Yn form the nth conjugate pair in the definition
of work ⟨δW⟩ = ∑

n Ynδyn. Since work is defined for
such continuous machines as ⟨δW⟩ = tr[ρ δH] [176],
for eigenstates with energies En distributed according to
a probability distribution Pn, the force F is given by

F =
∑

n
Pn
δEn
δL

. (64)

If the system is in equilibrium with a heat bath at
inverse temperature β , with the corresponding free en-
ergy being F = − log (Z)/β , then the force is given by
the usual formula F = −[dF/dL]β , evaluated at con-
stant temperature β−1. This force is calculated to be
F = (βL)−1. Hence, to execute an ‘isobaric process’,
wherein the pressure is held constant across a stroke,
the temperature must vary as β = (FL)−1. This can

be employed to construct a Diesel cycle, presented in
Figure 9, and whose four strokes are given by

(1) Isobaric Expansion: The expansion of the walls of
the particle in a box happen at constant pressure.
The width of the walls goes from L2 to L3 > L1.

(2) Adiabatic Expansion: An adiabatic expansion pro-
cess, wherein the length goes from L3 to L1 > L3.
Entropy is conserved in this stroke.

(3) Isochoric Compression: The compression happens
at constant volume L1 where the force on the box
is reduced.

(4) Adiabatic Compression: The compression process
takes the box from volume L1 to L2 < L1. This is
done by isolating the quantum system, conserving
the entropy in the process.

Like before, the efficiency is calculated by considering
the ratio of the net work done by the system to the
heat into the system. A straightforward calculation of this
efficiency yields

ηDiesel = 1 − 1
3
(r2E + rErC + r2C). (65)

Here, rE = L3/L1 is the expansion ratio and rC = L2/L1
is the compression ratio.

6.5. Quantumness of engines

Since the design of quantum engines is often analogous
to their classical counterparts, a central question is:What
are genuinely quantum ingredients for engines? There
are two important points to consider here: the first point
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Figure 10. Experimental proposal of an Otto engine consisting of a single trapped ion, currently being built by K. Singer’s group [174].
On the left, the energy frequency diagram corresponding to the Otto cycle implemented on the radial degree of freedom of the ion.
The inset on the left-hand side is the geometry of the Paul trap. On the right-hand side, a representation of the four strokes, namely
(1) adiabatic compression, (2) hot isochore, (3) adiabatic expansion and (4) cold isochore, see text for details. Figures taken from [171]
reproduced with permission.

is that when thermal machines operate between two heat
baths with well-defined temperatures, the efficiency of
such amachine is also limited by the classical efficiencies,
i.e. the Carnot and Curzon–Ahlborn efficiencies. The
Carnot efficiency, for instance, is derived independent of
the details of the working fluid and depends only on the
laws of thermodynamics. It is expected that these bounds
must also hold in the quantum setting.

Once the thermal machines are committed to operate
between two temperatures and in equilibrium, not much
can be done to change the efficiency of these machines
(see [177] for a recent example). Hence, the deviation
from classical performance of these thermal machines is
only seen when either the baths are made non-thermal or
the working fluid of the thermal machine is not allowed
to equilibrate, operating in a non-equilibrium setting.
To characterise such non-equilibrium thermalmachines,
several authors have studied the role of quantum corre-
lations [178] and the role they play in work extraction.

Using non-thermal heat baths [171,179] has been
another strategy to see the effect of quantum states on
thermalmachines. An example of such a study focuses on
Otto engines operated with squeezing thermal baths we
discussed in the previous subsection. In all such
examples, non-classical resources are employed to imp
rove engine performance, from power generation [170,
180] to efficiency [168,171,172]. Finally, we point out that
time has an important role to play in engine performance
since it relates to power. As detailed in Section 6.7, both
coherence and time play important roles in the design of
quantummachines [58,59,181]. As an example, consider
that the evolution of an initial state to a final state cannot
happen faster than a fundamental bound that depends on
theHamiltonian and states involved. Theminimum time
associated with this bound is often called the quantum

speed limit [182]. The quantum speed limit places a limit
on the power of quantum engines, and has been used to
improve engine performance [180]. Another approach
to time in quantum thermodynamics employs so-called
adiabatic shortcuts to improve engine performance in
both the classical [169] and quantum regime [170].

An adiabatic quantum system that starts in an eigen-
state of the Hamiltonian remains in the instantaneous
eigenstate of the Hamiltonian when the parameters of
the Hamiltonian are swept slowly enough (distinguish
this from the thermodynamic definition of adiabatic-
ity, which relates to having zero heat exchange). This
typically slow dynamics can be sped up both in the clas-
sical and quantum contexts by the addition of exter-
nal control fields that are bound to be transitionless.
Finally, we note that more foundational aspects of quan-
tummechanics, such as non-commutativity of operators,
have been shown to have a detrimental effect on engine
performance. This is known as quantum friction and
is also a genuinely quantum effect that impacts engine
performance [183]. Besides issues such as non-thermal
baths and non-commutativity, we refer the reader to
[184] for an information theoretic perspective on engine
design.

To answer the question about the quantumness of
engines, recent studies have focused on trying to study
alternative non-quantum models (to compare and con-
trast with quantum engines) or produce genuine quan-
tum effects to demonstrate the quantumness of engines.
On the difference between quantum mechanics and
stochastic formulation of thermodynamics, in [185], the
authors study quantumness of engines and show that
there is an equivalence between different types of en-
gines, namely: two-stroke, four-stroke and continuous
engines. Furthermore, the authors define and discuss
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quantum signatures in thermal machines by comparing
these machines with equivalent stochastic machines, and
they demonstrate that quantum engines operating with
coherence can in general output more power than their
stochastic counterparts. Finally, we note an example of a
QTM [186] operating in the continuous time regime that
produces entanglement. Theworking fluid considered by
the authors consists of two qubits, which are coupled to
two different baths and to each other. The steady state of
this thermal machine far from thermal equilibrium (in
the presence of a heat current) exhibits the interesting
property of creating bipartite entanglement in the work-
ing fluid. Such an engine can be said to have a ‘genuinely
quantum’ output.

6.6. Quantum refrigerators

Refrigerators are engines operating in a regime where
the heat flow is reversed. Like engines, the role that quan-
tised energy states, coherence and correlations play in the
operation of a quantum refrigerator have been fields of
extensive study [24,187–192].

Wepresent two examples of refrigerator cycles consid-
ered in the literature. The first of these [193] is built on a
three-level atom, coupled to two baths, as shown in Fig-
ure 11. The refrigerator is driven by coherent radiation.
This induces transitions between level 2 and level 3. The
population in level 3 then relaxes to level 1 by rejecting
heat to the hot bath at temperature TH. The system then
transitions from level 1 to level 2 by absorbing energy
froma cold bath. Like before, the dynamics can bewritten
in terms of the Heisenberg equation for an observable A.
LetLC,H refer to the Lindblad operators corresponding to
the cold and hot baths, respectively. Since this is a thermal
machine operated continuously in time, the steady-state
energy transport is themeasure of heat transported by the
machine. Assuming theHamiltonianH = H0+V(t), the
energy transport can be written as

d⟨H⟩
dt

=
〈
∂V(t)
∂t

〉
+ ⟨LH(H)⟩ + ⟨LC(H)⟩. (66)

Using this, the authors in [193] investigated the refrig-
erator efficiency. This efficiency is expressed in terms of
the coefficient of performance (COP), which is defined
as the ratio of the cooling energy to the work input into
the system. For two thermal baths at temperatures TC
and TH, respectively, the universal reversible limit is the
Carnot COP, given by

COP = TC
TH − TC

. (67)

COP can be larger than one, and in [194], the authors
show the relationship of the COP to the cooling rate,
which is simply the rate at which heat is transported from
the system.

The other example of quantum refrigerators takes a
more quantum information theoretic point of view. In
[18], the authors were inspired by algorithmic cooling
and studied the smallest refrigerators possible. One of
the models consists of a qubit coupled to a qutrit, see
Figure 11. The intuition for cooling the qubit comes
from a computational model of entropy reduction. This
procedure, called algorithmic cooling [17], is a procedure
to cool quantum systems which uses ideas of entropy
shunting to ‘move’ entropy around a large system in a
way that lowers the entropy of a subsystem. Consider n
copies of a quantum system which is not in its maximal
entropy state. Joint unitary operations on then copies can
allow for the distillation of a small number m of systems
which are colder (in this context, of lower entropy) than
before, while leaving the remaining (n−m) systems in a
state that is hotter than before (this is required by unitar-
ity). This is the intuition behind cooling of the qubit in
Figure 11. The refrigerator in [18] is the smallest (in
Hilbert space dimensionality) refrigerator possible. See
[187] for a discussion of the relationship of power to
COP and [187] for a discussion of correlations in the
design of quantum absorption refrigerators. Finally, we
note that there is a connection betweenmodels of cooling
based on study of heat flows of continuous models, such
as sideband cooling, and quantum information theoretic
models of cooling based on control theory [195–197].

6.7. Coherence and time in thermalmachines

In this subsection, we want to briefly discuss the role
coherence and time play in QTMs. The fundamental
starting point of finite time classical [198] and quan-
tum thermodynamics is the fact that the most efficient
macroscopic processes are also the ones that are quasi-
static and hence slow. Hence, they are impractical from
the standpoint of power generation. The role of quantum
coherences was illustrated by a series of studies involv-
ing commutativity of parts of the Hamiltonian, as ex-
plained below. Consider a quantum Otto engine, whose
energy balance equation is given in terms of the Hamil-
tonian part Hext + Hint and dissipative Lindblad oper-
ator L [199]. There are two sources of heat that were
studied in this model, and they are related to coher-
ence and time. The first of these sources of heat are
attributed to energy transfer from the hot bath to the cold
bath via the system. The second source of heat comes
from the finite time driving of the adiabatic strokes of
the engine. Such a finite time driving means that the



570 S. VINJANAMPATHY AND J. ANDERS

Figure 11. Two designs of refrigerators, the details of which are discussed in the text. The left figure consists of a three-level atom
coupled to two baths and interacting with a field, figure taken from [193]. The right figure consists of the smallest refrigerator, composed
of a qubit and a qutrit. Here, cooling of the qubit is achieved through joint transformations between the system and the reservoir,
wherein the system’s entropy is shunted to the reservoir. Figure taken from [18]. Figures reproduced with permission.

system causes irreversible heating which is understood as
follows. Suppose the initial state of the system is an eigen-
state of Hext. If [Hext,Hint] ̸= 0, then the quantum state,
even in the absence of Lindblad terms, does not ‘follow’
the instantaneous eigenstate of the external Hamiltonian.
The precession of the quantum state of the system about
this instantaneous eigenstate, that is induced by the non-
commutativity of the external and internalHamiltonians,
is a source of a friction like heat [183].

Finally, we present another model of a non-thermal
bath consisting of three-level atoms. In [179], the authors
extract work from coherences using a technique similar
to lasing without inversion. The photon Carnot engine
proposed by the authors to study the role of coherences
follows by considering a cavity with a single mode ra-
diation field enclosed in it. The radiation interacts with
phased three-level atoms at two temperatures during the
isothermal parts of the Carnot engine cycle. The three-
level atoms are phased by making them interact with an
external microwave source. The efficiency of this engine
was calculated to be

η = ηCarnot − π cos (,), (68)

where the phased three-level atoms have an off-diagonal
coherence term , that is used to improve the Carnot
efficiency. This engine is depicted in Figure 12. Thus, by
employing the coherence dynamics of three-level atoms,
the authors demonstrate enhancement in work output.
We end this section by noting that quantum features
are not necessarily beneficial to a QTM’s performance.
For example, a study of entanglement dynamics in three-
qubit refrigerators [191] demonstrates that there is only
very little entanglement found when the machine is op-
erated near the Carnot limit.

6.8. Correlations, work extraction and power

Finally, let us discuss the aspects of work extraction com-
mon to both cyclical and non-cyclical thermal machines.

A non-cyclical example of the use of quantum correla-
tions to improve machine performance involves quan-
tum batteries. These are quantum work storage devices
and their key issues relate to their capacity and the speed
at which work can be deposited in them. This question of
work deposition can be studied in two steps. Firstly, it is
desirable to understand the limits on thework extractable
from a quantum system under unitary transformations,
V.Here, consider states to bewritten in an ordered eigen-
basis as ρ = ∑

k r
↑
k |r↑k ⟩⟨r↑k | and H = ∑

k ϵ
↓
k |ϵ↓k ⟩⟨ϵ↓k |.

Note that |r↑k ⟩, the eigenstates of ρ, are a priori unrelated
to |ϵ↑k ⟩, the eigenstates ofH . The arrows show the order-
ing of eigenvalues, namely: r↑0 ≤ r↑1 . . . and likewise for
the Hamiltonian. The optimal unitary that extracts the
most work from ρ is given by the unitary that maps ρ
to the state π = ∑

r↑k |ϵ↓k ⟩⟨ϵ↓k | [32–34,200]. Such states,
where the eigenvalues are ordered inversely with respect
to the eigenvectors of the Hamiltonian, are known as
‘passive states’ [33,34] and the corresponding maximum
work extracted from the unitary transformation,

⟨Wmax
ext ⟩ = tr[H(ρ − π)]. (69)

is called ‘ergotropy’. Note, that the thermal states τβ =
e−βH/tr[e−βH ] for any inverse temperatureβ are passive.
Ground states of a given Hamiltonian, for instance, are
examples of states passive with respect to the Hamilto-
nian and correspond toβ = ∞. Thermal statesmaximise
the entropy for a given energy and minimise the energy
for a given entropy. Passive states which maximise the
energy for a given entropy were sought in [201], and are
useful in bounding the cost of thermodynamic processes.
Passive states are important to understand the function-
ing of quantum engines, see [202] for example.

The role entangling operations play in extractingwork
using unitarys transformations was explored within the
simultaneous extraction of work from n quantum bat-
teries [203]. They considered n copies of a given state
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Figure 12. An optical Carnot engine, discussed in the text. The engine is driven by the radiation in the cavity being in equilibrium
with atoms with two separate temperatures during the hot and cold parts of the Carnot cycle. The phased three-level atoms have an
off-diagonal coherence term, that is used to improve the Carnot efficiency. Figure taken from [179], reproduced with permission.

σ and a Hamiltonian H for each system. As discussed
before, σ and H imply that there exists a passive state π .
Two strategies for extracting work exist, the first of these
being to simply process each quantum system separately.
The second strategy is to do joint entangling operations,
which transform the initial state σ⊗n to a final state
which has the same entropy as n copies of σ . The authors
considered a Gibbs state τβ where the temperature was
fixed by matching the entropy of this state with σ . They
considered such a state since this state provided a upper
bound on the amount of work that could be extracted by
transforming σ⊗n into a passive state. Since the final state
τ⊗n
β has the same entropy as n copies of the initial state,
a transformation between σ⊗n and the neighbourhood
of τ⊗n

β would be the desired transformation that extracts
maximum work. Such a transformation was shown to be
entangling, using typicality arguments [112]. However,
the authors in [204] pointed out that there is always a
protocol to extract all the work from non-passive states
using non-entangling operations, although in compari-
son to entangling unitaries, more non-entangling oper-
ations are needed. This suggests a relationship between
power and entanglement in work extraction, an assertion
demonstrated for quantum batteries in [180]. A different
role can be played by correlations in storing and extract-
ing work, as discussed in Section 2. This role relates
to storing work in correlations. It has been shown by
several authors [58,59,191] that measures of correlations
like quantummutual information and entanglement can
affect the performance of thermal machines.

A final noteworthy point in the consideration of time
explicitly in the context of QTMs relates to maximum
power engines. Firstly, since the optimal performance of
engines corresponds to quasi-static transformations, the
power is always negligible and the time of operation of
one cycle is infinite (or simply much longer compared
to the internal dynamical time scales of the quantum

systems). To remedy this, both classically and quantum
mechanically, engines which optimise power have been
considered. These studies find the efficiency atmaximum
power, see Equation (59), first derived in the classical
context byCurzon andAhlborn [163] but also valid in the
quantum case [155]. See [170] for a discussion of short-
cuts to adiabaticity and their role in optimising power
in Otto engines and [205] for a calculation of efficiency
at maximum power of an absorption heat pump, which
also proved the weak dependence of efficiency and power
with dimensionality. In [168,206], the authors consider
the power of Otto cycles in various regimes, and derive
the steady-state efficiency

ηSS = 1 − √
βH/βC

2 + √
βH/βC

. (70)

6.9. Relationship to laws of thermodynamics

We end the discussion of QTMs with a small report on
the role that the laws of thermodynamics, discussed in
Section 2, play in constraining design. As was noted in
the context of engines, the first law emerges naturally as
a partitioning of the energy of the system in terms of
heat and work. See [101] for a partitioning of internal
energy change for CPTP processes. In the context of
QTMs, for instance, this can be seen in Equation (60).
The second law manifests itself usually by inspecting the
entropy production of the universe [193]. This is given
for a typical continuous regime QTM, with a system and
two baths as

dS
dt

= −⟨Q̇H⟩
TH

− ⟨Q̇C⟩
TC

. (71)

Analysis of the dynamics shows that the second law en-
forces the rule that the net entropy production, given
by the equation above, is non-negative. See [187,207]
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to study the relationship between weak coupling and
the second law. Information theoretic approaches often
use monotonicity condition of relative entropy to track
entropy production, see section 4. Finally, we note the
work in [190] relating to the second law and [208] for heat
engine fluctuation relation and experimental proposal,
all in the context of SWAP engines. In [209], the authors
discuss how in a network of quantum systems coupled to
reservoirs at different temperatures, the second law is vi-
olated locally, though its always valid globally, in linewith
intuition (see Ref. [100] for a discussion on the violation
of entropic inequalities, see [210] for a discussion on the
role of non-linear couplings in refrigerator design). The
role of the second law, in all these examples, tends to be to
modify the existing figures of merit, like efficiency [171],
and hence show a path towards understanding nanoscale
QTMs.

The third law states that the entropy of any quantum
system goes to a constant as temperature approaches
zero. This constant is commonly assumed to be zero. This
means, that in the context of the equation above, the heat
current corresponding to the cold bath, ⟨Q̇C⟩ ∝ Tα+1

C
as TC → 0 with α > 0. Since we are discussing the
limit of the cold bath temperature going to zero, we
expect that the third law will inform the operation of
quantum refrigerators and heat engines, where the cold
bath temperature is quite low. Furthermore, the third law
affects the ability for us to cool a quantum system as the
system approaches absolute zero. This is because there is
a trade-off between the entropy generated by the system
coupling to an environment that is used to cool the system
and the fact that approaching absolute zero means that
the system becomes a pure state (assuming the ground
state is unique). This trade-off practically limits COP.
This was studied in [193], see also [24] for a discussion
on another formulation of the third law and [211] for
a recent review of the laws of thermodynamics in the
quantum regime. In [212], the authors discuss periodi-
cally driven quantum systems and investigate the laws of
thermodynamics for amodel of quantumrefrigerator, see
[213–215]. Finally, in [216], the authors study the third
law in the context of refrigerators and show that the rate
of cooling is determined entirely by the cold reservoir
and its interaction to the system, and is insensitive to
underlying the particle statistics.

7. Discussion and open questions

We have presented an overview of a selection of current
approaches to quantum thermodynamics pursued with
various techniques and interpreted from different per-
spectives. Substantial insight has been gained from these
advances and their combination, and a unified language

is starting to emerge. This difference in perspectives has
also meant that there are ideas within quantum thermo-
dynamics where consensus is yet to be established.

One example of such disagreement is the definition of
work in the quantum regime. Various notions of work
have been introduced in the field, including the average
work defined for an ensemble of experimental runs in
Equation (2), classical and quantum fluctuating work
defined for a single experimental run in Equations (15)
and (24), optimal single shot work given in Equation
(48) and optimal thermodynamic resource theory work
given in Equation (50). It is reassuring to see that the
latter two, quite separate single shot approaches, result
in the same optimal work value. Despite advances in
unifying these work concepts, our understanding of work
in the quantum regime remains patchy. For example,
resource theory work, Equation (50), is a work associated
with an optimised thermal operations process – to move
a work storage system almost deterministically as high
as possible – while the fluctuating work concept, Equa-
tions (15) and (24), is applicable to general closed and
open dynamical processes [64,217]. Thus, they appear
to refer to different types of work, a situation that may
be compared to different entanglement measures each
of importance for a different quantum communication
and computational task. For example, it has been sug-
gested that the resource theory work is a suitablemeasure
to quantify resonance processes [149]. A second issue is
the link between the work definition in the ensemble
sense, see (2), and the single shot work. Beyond taking
mathematical limits of Renyi entropies, these definitions
have to be understood within the context of each other
operationally, i.e. how can one measure each of these
quantities and in what sense do these quantities converge
experimentally? Indeed, while traditional classical ther-
modynamics is a manifestly practical theory, made for
steamengines and fridges, quantum thermodynamics has
only made a small number of experimentally checkable
predictions of new thermodynamic effects yet.

Another point of discussion is the kinematic versus
dynamical approach to thermalisation and equilibration.
The kinematic approach arises from typicality discus-
sions in quantum information where states in Hilbert
space are discussed from the standpoint of a property
of their marginals. In the case of thermalisation, this
property is the closeness to the canonical Gibbs state. A
Hamiltonian and its eigenstates never appear in the kine-
matic description. The situation is quite different in the
case of the dynamical approach to thermalisation implied
by the ETH, where the eigenstates of the Hamiltonian are
of crucial importance. A connection between these two
techniques to study thermalisation is thus desirable. This
difference in perspectives between quantum information
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theoretic and kinematic approaches also needs to be rec-
onciled in the study of pre-thermalisation. Exceptional
states such as ‘rare states’ need to be fully understood
from a kinematic standpoint, see [218] for a discussion
on rare states and thermalisation.

In the context of QTMs, the interplay between statis-
tics and engine performance needsmore study [158,219].
This is crucial since typical work fluids of QTMs consti-
tute several particles. Though some authors have consid-
ered non-thermal baths in contact with a working fluid,
almost all such studies involved unitary transformations
on thermal states. There is a need for the study of thermal
machines,wherein at least oneof the baths is non-thermal
in a way that is different from unitary transformations
on thermal baths. The role of entanglement and other
correlationswould clearly become very important in such
a regime. Finally, we note that various experimental im-
plementations of quantum engines are expected in the
near future [220].

To close, quantum thermodynamics is a rapidly evolv-
ing research field that promises to change our under-
standing of the foundations of physics while enabling
the discovery of novel thermodynamic techniques and
applications at the nanoscale. This overview provided an
introduction to a number of current trends and perspec-
tives in quantum thermodynamics and concluded with
three particular discussions where there is still disagree-
ment and flux. Resolving these and other riddles will no
doubt deepenour understanding of the interplay between
quantum mechanics and thermodynamics.
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