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Abstract
This paper considers work extraction from a quantum system to awork storage system (orweight)
followingHorodecki andOppenheim (2013Nat. Commun. 4 2059). An alternative approach is here
developed that relies on the comparison of subspace dimensions without a need to introduce thermo-
majorization used previously. Optimal single shot work for processes where aweight transfers from
(a) a single energy level to another single energy level is then re-derived. In additionwe discuss the
final state of the system after work extraction and show that the system typically ends in its thermal
state, while there are cases where the system is only close to it. Thework of formation in the single level
transfer setting is also re-derived. The approach presented now allows the extension of the single shot
work concept towork extraction (b) involvingmultiple final levels of theweight. A key conclusion
here is that the single shot work for case (a) is appropriate only when a resonance of a particular energy
is required.Whenwishing to identify ‘work extraction’with finding theweight in a specific available
energy or any higher energy a broadening of the single shot work concept is required. As afinal
contributionwe consider transformations of the system that (c) result in general weight state transfers.
Introducing a transfer-quantity allows us to formulateminimum requirements for transformations to
be at all possible in a thermodynamic framework.We show that choosing the free energy difference of
theweight as the transfer-quantity one recovers various single shot results including single level
transitions (a),multiplefinal level transitions (b), and recent results on restricted sets ofmulti-level to
multi-level weight transfers.

1. Introduction

The neat characterization of general classical non-equilibriumprocesses in terms offluctuation relations
[2–4, 8] has rapidly advanced the general understanding of thermodynamic processes and properties at the
mesoscopic scale.Work, in particular, is a thermodynamic quantity of interest and the stochastic fluctuations of
work done on a system are captured in the Jarzynski relation [3]. Thefluctuation relation approach has been
extended to quantum systemswhere probabilistic energy transfers of the system that undergoes unitary
evolution are associatedwith the fluctuatingwork done on the system [5–7, 9–12]. Again thework for this
quantum scenario can be captured in a quantum Jarzynski relation.On the other hand, thermodynamic
processes for a quantum system can be studied in a settingwhere the system interacts with a heat bath and awork
storage system (orweight) undergoing global unitary dynamics [1, 13–18].Operation on the system then results
in a change of thework storage system’s state and it is that change that is here associatedwith ‘work’. These
approaches are referred to as ‘thermodynamic resource theory’ and ‘single shot thermodynamics’. Recent
papers, e.g. [1, 15], derive upper bounds on the amount of work that can be drawn from a quantum system that
starts in a non-equilibrium state in a ‘single shot’.

The single shot work done by the system is here associated [1]with the transition of theweight from a single
energy eigenstate (of energy 0) to another single energy eigenstate (of energyw). This situation is sketched in

OPEN ACCESS

RECEIVED

2April 2015

REVISED

18 June 2015

ACCEPTED FOR PUBLICATION

30 June 2015

PUBLISHED

17August 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft



figure 1(a). The proof of the bounds provided in [1] relies on establishedmathematical concepts fromquantum
information theory and a newmajorization concept called ‘thermo-majorization’. Researchers, in particular
those outside of quantum information theory,may find the proofmathematically heavy and are unable to follow
the detailed logic. This technical difficulty overshadows the interpretation of the results andmay hinder their
further development and formulation of experimental tests of single shot results.

Here we aim to re-derive single shot work extraction limits while keeping the technical side as simple as
possible. The hope is that stripping the discussion from some of the jargonwill allow to focus on the physical
meaning of the results, clarify the situation they describe, and develop the argument further to adapt to different
physically relevant scenarios.

The paper is organized as follows. The knownwork extraction result of [1] for scenario (a) infigure 1 is
re-stated in section 2 and then re-derived in section 3. Thefinal state of the system after this work extraction
procedure is explored in section 4. Also re-derived, in section 5, is thework of formationwhichwasfirst
identified as different from the extractable work in [1]. The extension of single shotwork extraction to general
transfer processes is discussed thereafter. Section 6 is concernedwith the extractable work allowing (b) the
transition of theweight from a single energy eigenstate of energy 0 to a set of energy eigenstates of energy
w w[ ˜, ˜ ]δ+ . Section 7 identifies a transfer-quantity that characterizes (c) the transition of theweight from an
arbitrary range of energy eigenstates to another range of energy eigenstates. Finally, the findings and open
questions are discussed in section 8.

2. Known results onmaximal single shotwork extraction

Akey result in single-shot thermodynamics is the identification of amaximal work [1, 15]

w F F( ) ( ), (1)S S
max min ρ τ= −ϵ ϵ

that can be extractedwith success probability 1 ϵ− from a system starting in a state Sρ under so-called thermal

operations [1].Here F Z( ) lnS S
1τ ≔ − β is the standard free energy associatedwith the thermal state S Z

e HS

S
τ ≔ β−

for a systemHamiltonianHS at inverse temperature β, with Z tr[e ]S
HS= β− the partition function. (In [1] the

system is a qubit with the excited state energy tuned such as to have exactly the optimal work value that can be
gained, i.e. H w0 0 0 1 1S S S

max= ∣ 〉 〈 ∣ + ∣ 〉 〈 ∣ϵ .) The other quantity, F ( )S
min ρϵ , is a generalized free energy

applicable for the non-equilibrium state Sρ [1]whichwill be detailed below. Thismaximal work is valid for
initial states Sρ that are diagonal in the energy basis and it is at least a lower bound on themaximal work for non-
diagonal states [1, 15, 19].

This result is derivedwithin the thermodynamic resource theory setting [1, 13–18] involving three
components: the systemof interest, S, a bathB, and aweight (orwork storage system)W. In the simplest case,
theHamiltonian at the start and the end of the process is assumed to be the same and the sumof the three local
terms, H H H HS B W= + + . Theweight is assumed to have no degeneracies, i.e. all its energy eigenstates have
different energies EW. The system’s degeneracy is not restricted andwe denote themultiplicity of each energyES
by M E( )S S and label each of themby g E M E( ) 1 ,..., ( )S S S S= . The degenerate bath levels at energyEB are labeled
by f E( )B B and theirmultiplicity is assumed to be exponentially growingwith inverse temperature
f E M E M E( ) 1 ,..., ( ) 1 ,..., (0)exp( )B B B B B Bβ= = . This exponential growth of the degree of degeneracy (or the
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!
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Figure 1. Sketch of the transition of the weight (a) from a single energy eigenstate (of energy 0) to another single energy eigenstate (of
energyw), (b) from a single energy eigenstate of energy 0 to a set of energy eigenstates of energy w w[ ˜, ˜ ]δ+ , and (c) from a range of
energy eigenstates to another range of energy eigenstates.
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density of states) generically results for all systemsmade ofmany similar subsystems that feature short range
interactions [20].We note that it only holds for a possibly large but finite energy regime.

Thermal operations have been defined [1] as those transformations of the system that can be generated by a
global unitary,V, that acts on system, bath andwork storage system initially in a product state

E ES B W W W
ini iniρ τ⊗ ⊗ ∣ 〉 〈 ∣, with the bath in a thermal state, B Z

e HB

B
τ = β−

, and thework storage system in one of its

energy eigenstates, EW
ini∣ 〉. Conceptually, global unitariesV describe the operation of a ‘work extractionmachine’

that aims to extract asmuch energy as possible to thework storage system. Perfect energy conservation is
imposed by requiring that the unitarymay only induce transitionswithin an energy shell of total energy
E E E EW S B= + + . This is equivalent to requiring thatVmust commutewith the sumof the three local
Hamiltonians.

The generalized free energy of the non-equilibrium state Sρ is defined as

( )F h E g( )
1

ln e , , . (2)S
E g

E
S S

min

,S S

S∑ρ β ϵ≔ −ϵ
β−

Here h E g( , , )S S ϵ is a binary function that determines whether a particular energy eigenstate, E g,S S∣ 〉, is
included in the summation or not. The value of h depends on Sρ and on the failure rate ϵ that is being accepted
for thework extraction. The exact dependence will be discussed further in section 3. The optimal work stated in
equation (1) now corresponds to the following task: for theweight initially entirely in its ground state (with
energy E 0W

ini = ) the full system is transferred to afinal quantum state such that the probability for theweight to
be found in an energy eigenstate with energy EW

fin is 1 ϵ− where 1 0ϵ> ⩾ , see figure 1(a). This process is
associatedwith the ‘lifting’ of theweight and the energy difference experienced by theweight is identifiedwith
‘extractedwork’, w E EW W

fin ini≔ − . For the special case of perfect work extraction, i.e. 0ϵ = , the summation in
equation (2) includes all energy eigenstates E g,S S∣ 〉 that are populated in the initial state, i.e. h E g( , , 0) 1S S =
when E g E g, , 0S S S S Sρ〈 ∣ ∣ 〉 > , and 0 otherwise. Themaximal work is then [1]

w
1

ln tr ˆ , (3)S0
max

S

⎡⎣ ⎤⎦β τ Π= − ρ

where ˆ
S

Πρ is the projector on the support of Sρ .

3.Work extraction bounds from limits on probability transfer

The derivation of themaximal extractable work presented in [1] rests on an analysis of state dimensionswhich is
combinedwith the newly introduced concept of thermo-majorization. This is a variation onmajorization, an
important tool in the study of doubly stochasticmatrices [21–23] and quantum channels in particular [24, 25].
Herewe present a derivation of the same result without a need of invoking thermo-majorization explicitely.We
hope this re-derivation ismore straightforward to follow for researchers wishing to familiarise themselves with
single-shot thermodynamics.

The rational of the presented approach is to compare dimensions of the involved projective subspaces to
concludewhat transformations on the system are possible in the setting given andwhatmaximal work
extraction they enable. The re-analysis opens avenues of generalizing the previous result, valid for transitions of
theweight from single energy level to single energy level, to processes where theweight transfers between
multiple energy levels, whichwewill explore in sections 4 and 6. Thework required to form a non-equilibrium
state is also described, in section 5.

The desired thermal transformation is of the form

w w V: 0 0 ( ), (4)SB W
V

SB Wη ρ σ η= ⊗ ∣ 〉 〈 ∣ ⟶ ⊗ ∣ 〉 〈 ∣ ≕ ′

where the system and bath start in afixed state SBρ and end in some state SBσ , while thework storage system lifts
from a single energy level, 0∣ 〉, to another single energy level, w∣ 〉, by an energy w 0> , see figure 1(a). Such a
transformation, however, turns out to be impossible for a large class of initial states, SBρ , namely thosewhich
have full rank. Thus one allows transformations under which the lhs of (4) is transformed into the rhs only up to
a success probability 1 ϵ− , as already introduced in section 2. Since the global unitary,V, is fully energy
conservingwemay treat the global dynamics for each global energy shellE separately and later combine their
contributions. Note that those energy shells are projective subspaces and so are the individual energy levels that
make up the shell.We denote the local projectors defined by their associated local energies E E,S B and EW by

E Eˆ ( ), ˆ ( )S S B BΠ Π and Eˆ ( )W WΠ .
Tofind themaximal work wmax

ϵ wefirst consider a probability P 1E
ini ⩽ which falls initially into a projective

subspace ˆ E
iniΠ of dimension d E

ini, i.e. P tr[ ˆ ]E E
ini iniηΠ= for the initial state η. The key task here is to decide if this
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probability can be transferred entirely into a projective subspace ˆ E
finΠ under unitary transformationsV. This is of

course possible if

V V Ptr ˆ ˆ ˆ tr ˆ ˆ (5)
E E E E E E

fin ini ini
† !

ini ini ini
⎡⎣⎢ ⎤⎦⎥ ⎡⎣⎢ ⎤⎦⎥Π Π ηΠ Π ηΠ= =

holds. Rewriting this condition using the non-trivial eigenstates n∣ 〉ofV Vˆ ˆE E
ini ini

†Π ηΠ , i.e.

V V n p nˆ ˆE E
nini ini

†Π ηΠ ∣ 〉 = ∣ 〉with p 0n > for n d1 ,..., E
ini= , implies

p n n p Pˆ (6)
n

d

n
E

n

d

n
E

1

fin
!

1

ini

E E
ini ini

∑ ∑Π〈 ∣ ∣ 〉 = =
= =

and therefore onemust have n nˆ 1
E

finΠ〈 ∣ ∣ 〉 = for n d1 ,..., E
ini= . This is only possible if the dimension of the

space intowhich the probability ismapped, d rk[ ˆ ]E E
fin finΠ≔ , is at least the same as the initial dimension, i.e. the

condition becomes

d d . (7)E E
fin ini⩾

If not thewhole probability PE
ini but a slightly reduced probability P(1 ) E

iniϵ− is to be transferred, then onemay

replace ˆ E
iniΠ in equation (5)with any projector ˆ ( )

E
iniΠ ϵ that fulfils

Ptr ˆ ( ) (1 ). (8)
E E

ini ini
⎡⎣⎢ ⎤⎦⎥Π ϵ η ϵ⩾ −

Defining the smallest initial subspace dimension as d d( , ) min dim( ˆ ( ))E E E
ini ˆ ( ) ini ini

E
ini

ϵ η Π ϵ≔ ⩽Π ϵ , thefinal space
dimension condition, when allowing a small error probability ϵ in the transfer, relaxes to

d d ( , ). (9)E E
fin ini ϵ η⩾

This constraint is now the key condition to establishwhat themaximum extractable work is for the thermal
operations specified in equation (4).

SinceV cannotmix energy shells, it is necessary to check the condition for each energy shell E.We interpret

the projector ˆ E
finΠ used above as the operator that projects on the non-trivially populated subspace of the final

global state, w wSB Wσ ⊗ ∣ 〉 〈 ∣, with energy E. By construction one has the relation

( ) ( )E E E w wˆ ˆ ˆ ˆ ( ). (10)
E

E

S S B S Wfin

S

∑Π Π Π Π= ⊗ − − ⊗

Wecannow identify the dimension of ˆ E
finΠ ,

( ) ( ) ( )d M E M E E w M E M E, ( ) e (11)E

E

S S B S

E

S S B
E w

fin

S S

S∑ ∑= − − = β β− −

M E Z( ) e , (12)B
w

S= β−

where Z M E( ) eS E S S
E

S

S∑= β− is the thermal equilibriumpartition function at inverse temperature β for the

system. The second step is to consider the initial subspace projectors in the energy shell E,

( ) ( )E E Eˆ ˆ ˆ ˆ (0). (13)
E

E

S S B S Wini

S

∑Π Π Π Π= ⊗ − ⊗

In the followingwe aim to specify the dimension d ( , )E
ini ϵ η of a sub-projector of ˆ E

iniΠ inwhose associated
subspace lives the fraction 1 ϵ− of the initial state (η) population (PE

ini) in energy shellE. For 0ϵ = and SBρ a full

rank state the dimension of ˆ E
iniΠ itself is just

( ) ( )d M E M E E M E Z(0) ( ) . (14)E

E

S S B S B Sini

S

∑= − =

However, to determine the initial dimension d ( , )E
ini ϵ η for afinite failure rate 0ϵ > wewill need to specify the

global initial state η a littlemore.While not the only choice, herewe consider the class of initial global product
states previously discussed [1, 15, 16]

0 0 , (15)S B Wη ρ τ= ⊗ ⊗ ∣ 〉 〈 ∣

where Sρ is a system state that is diagonal in the basis of the systemHamiltonian and the bath is in a thermal state

Bτ .Wewill label the eigenvalues of Sρ when diagonalized in the system energy eigenbasis by E g( , )S Sλ where ES is
the corresponding energy and gS the degeneracy index. By construction all non-zero eigenvalues of η in the energy
shellE, i.e. the non-zero eigenvalues of ˆ ˆE E

ini iniΠ η Π , are then

4
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( ) ( )
( )

r E g f E g
Z

, , ,
e

. (16)E
S S B S S

E E

B

S

λ=
β− −

Here f M1 ,...,B B= is the degeneracy index of the bath at energy E E EB S= − ; but it does not affect the
magnitude of ηʼs eigenvalues. The eigenvalues thus have a highmultiplicity, given by the bathmultiplicityMB.
The eigenvalues can be re-labeledwith d1 ,..., (0)E

iniα = as r E g f r( , , )E
S S B

E= α , such that they are arranged in

decreasing order, r r r ...E E E
1 2 3⩾ ⩾ , see figure 2. The spectra of different energy shellsE, as sketched infigure 2,

differ only by a factor of e Eβ− for the individual values while theirmultiplicityMB differs by a factor of e Eβ . The

population probability of the global state η in energy shellE is given by r P
d E E

1

(0)
ini

E
ini∑ =α α= .

Nowwe are ready to identify the dimension d ( , )E
ini ϵ η of the subspacewithin the energy shellEwheremost

of the initial probability, P (1 )E
ini ϵ− , lives. In the sumabove one simply has to add up the α to

d d( , ) (0)E E
ini iniϵ η ⩽ whichmust be chosen such that the probability reduces to the desired level

r P (1 ). (17)
d

E E

1

( , )

ini

E
ini

∑ ϵ⩾ −
α

ϵ η

α
=

Comparingwith equation (14) thefinal dimension is given by

( ) ( )d M E E h E g( , ) , , (18)E

E g

B S S Sini

,S S

∑ϵ η ϵ= −

where h E g( , , )S S ϵ determines which terms are included in the sum, as visualized and explained infigure 2. An
h-value of 1 (0) indicates that awhole block of global eigenvalues all corresponding to system state E g,S S∣ 〉 is
(not) included in the summation, while a fractional h-value indicates that a fraction of the eigenvalues in a block
is included, see figure 2.

The value of d ( , )E
ini ϵ η must be chosen as the smallest integer that fulfills (17). It can happen that ϵ has a value

thatwould require to split up an individual eigenvalue r E
α in order to fulfill (17) as an equality, i.e.

r a r P (1 )
n E

n
E E

1 1 ini∑ ϵ+ = −α α= + where n is an integer and a0 1< < a real fraction. In this case the eigenvalue

rn
E

1+ must be fully included, i.e. hmust be chosen as the larger proper fraction available. For example, having to
split the 3rd of 5 eigenvalues in a block E g( , )S S the associated h E g( , , )S S ϵ must be chosen 3/5 rather than 2/5, in
order to guarantee that the failure probability is strictly less than ϵ.

For amap that is identical to (4) up to a failure probability ϵ wehave obtained the initial and final subspace
dimensions for each energy shell E. They allowus to check themaximal work extraction condition equation (9)

global probability
block for system
state |Es, gs 〈 Pini (1 −  e)

E Pini
E

α

rαE

h= 1 h= 1 h= 3/5 h= 0

1 2  . . . . MB (E−ES)

Figure 2.Eigenvalues r E
α of global initial state η in energy shellE given in equation (16) arranged in decreasing order by their index α.

For any particular system state E g,S S∣ 〉 there is a whole block of global state eigenvalues of the samemagnitude that arises due to the
bath’s degeneracy M E E( )B S− at energy E E EB S= − . The full initial probability, PE

ini , is indicated by the red box. The slightly
reduced probability that is to be transferred, P (1 )E

ini ϵ− , is indicated by the green box. Tomake up the slightly reduced probability
blocks of probabilities are either fully included (h = 1), fractionally included (e.g. h 3 5= ), or not included (h = 0) in the
summations in equations (18) and (19).
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for eachE. One has

( )

( )

d M E Z M E h E g d

w h E g F w

( ) e ( ) e , , ( , )

1
ln e , , ( ) . (19)

E
B

w
S

E g

B
E

S S
E

E g

E
S S

fin

,

ini

,

max

S S

S

S S

S

∑

∑

ϵ ϵ η

β ϵ τ

= ⩾ =

⩽ − − =

β β

β
ϵ

− −

−

The last line shows that because of the trivial dependence of d ( , )E
ini ϵ η onE, the latter drops out and the

expression for themaximal extractable work stated in equation (1) is recovered [1]. Note, that the definition of h
has been extended from a binary function, used in equation (1), to include rational fractions. The optimal work
described by equation (19) is thusmarginally larger than thework described by equation (1). To recap, this work
ismaximal under variation of the global unitariesV that realize themap (4). The bound is tight when ϵ is chosen
such that no splitting of eigenvalues would be necessary.

Note, that using the eigenvalues of the thermal state, Sτ , denoted by t E( )S Z

e ES

S
≔ β−

, themaximal extractable

work (1) can also bewritten as

( ) ( )w t E h E g
1

ln , , . (20)
E g

S S S
max

,S S

∑β ϵ= −ϵ

Clearly, if hwas 1 for all its arguments, i.e. all the eigenvalues infigure 2 have to be included, then themaximal
extractable work is 0. For 0ϵ = no probability can be lost and h=1 for all energy levels with non-zero
population.Work can thus only be extracted if the initial state has rank less than the systemHilbert space
dimension or 0ϵ > or both.

4. Thefinal system state

Thework extraction protocol, equation (4), hasmapped V( )η η→ ′ . It is natural to ask inwhat reduced state
Vtr [ ( )]S BWσ η= ′ the system is left as a result.Wewill here answer this question.

A crucial point to note is that not a single, unique unitaryV corresponds tomaximumwork extraction but

that there are infinitelymany. Any unitary thatmaps the projective energy subspaces ˆ ( )
E

iniΠ ϵ , with dimensions

d ( , )E
ini ϵ η calculated in section 3, onto the projective subspaces ˆ E

finΠ will give rise tomaximumwork extraction.
The large set of unitaries with this property forms a subset of all allowed unitaries, i.e. those that commutewith
H. As afirst stepwe look at the average final state, obtained through the application of each of these unitaries and
integration over the respectiveHaarmeasure, whichwe denote by ·〈〈 〉〉. Details on integration overHaar
unitaries can be found e.g. in [26].Note that even though the unitariesV commutewithH, V( )η′ itself need not
be diagonal w.r.t. to the product basis of local energy eigenstates that defines the energy shells.WhileH and

V( )η′ share a simultaneous eigenbasis there is no guarantee, due toH having degeneracies, that this is the
product basis of local energy eigenstates and thus V( )η′ can have off-diagonal elements in the degenerate blocks
ofH. For the diagonal part of V( )η′ w.r.t. the above basis consisting of products of energy eigenstates of
individual subsystems, V( )diagη ′ , onefinds

w we e , (21)H H
Wdiag

S Bη〈〈 ′ 〉〉 ∝ ⊗ ⊗ ∣ 〉 〈 ∣β β− −

see appendix A for details of the derivation. This is a factorized state where the system and bath are each in
thermal states at inverse temperature β. However, this result in itself is not sufficient to conclude that typically an
almost thermal state of the system results from an individualV. One needs to calculate also the relative variances
of P E E g( , , )S Sfin . The latter are the portions of the diagonal elements at E g,S S of thefinal reduced state of the
system Sσ that correspond to the parts of the totalfinal state living in energy shell E, i.e., E g E g, ,S S S S Sσ〈 ∣ ∣ 〉 =

P E E g( , , )
E S Sfin∑ . Hence, if these relative fluctuations are small onewill typically get diagonal elements of Sσ

that resemble their averages, which in turn coincide, according to equation (21), with those of a thermal state.
Concretely we obtain for those relative fluctuations, see appendix A

( )
( ) ( )

P E E g

P E E g M E E w

, ,

, ,

1
, (22)

S S

S S B S

fin

fin

Δ
〈〈 〉〉

≈
− −

which is indeed very small due to the largemultiplicity of the bath M E E w M E( ) ( ) eB S B
E w( )S− − = β− + for

energies E E wS≫ + . Off-diagonal elements are considered separately, as detailed in appendix A, but it turns out
that the variance to their vanishingmean also scales as

M E E w

1

( )B S− − . Thus, for a unitary drawn at randomall
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elements of a typicalfinal system state Sσ are
M E E w

1

( )B S− − close to the average thermal state if the bath is large.

The entire above reasoning is along the lines of what has become known as ‘quantum typicality’ [27–30].
Having realized that optimal work extraction can result in amultitude offinal states, with typical state being

close to the thermal state, onemaywonder why it is not possible to extractmorework in those rare instances
where thefinal state happens to be fairly different from the thermal state.Here it is important to note that the
final state need not to be factorized between system and bath (see equation (21) only describes the diagonal
part). Indeed, it is known [31–35] that only a negligible set of the final states will be factorized, especially when
the degeneracies of the bathB are large.However, to repeat the samework extraction process requires an initially
fully factorized state, thus preventing repetition and further work extraction along the same route for the
majority cases.

Finally, a concernmay be that one could introduce a ‘fresh bath’ that is uncorrelatedwith thefinal system in
order to extract evenmorework froma non-thermalfinal system state. Here it is important to realize that the
work extraction process with the first bath left the systemnot necessarily in a thermal state, but certainly in a state
with full rank, Sσ . This is due to the fact thatmaximumwork extraction requires a non-zero population of every

dimension spanned by ˆ E
finΠ , see equation (10). As can be seen from equation (3) a full rank system statemeans

that there is no potential for further ‘perfect’work extraction, i.e.movingweight population from w0 W W∣ 〉 → ∣ 〉
with certainty ( 0ϵ = ), even if new baths are brought in. If the first work extraction process is imperfect ( 0ϵ ≠ ),
i.e. theweight endswith population in 0 W∣ 〉 and w W∣ 〉 , in general weight and systemwill be correlated, thus also
violating the initial factorization condition, see (4), for a secondwork extraction process. Nevertheless, for
completeness, suppose that the result factorizes and theweight is chosen such that it has additional energy levels
w2∣ 〉 and w w2∣ + 〉, wherew2 is adjusted tomatch w w ( )S2

max σ= ϵ of equation (20) applied to Sσ . One can now
indeed perform a second imperfect work extractionwhichmay verywell increase themean energy in theweight
system.However, this will lead to aweight level population of at least three of the four eigenlevels,

w w w w0 , , ,W W W W2 2∣ 〉 ∣ 〉 ∣ 〉 ∣ + 〉 . This scenario is outside of what is allowed in case (a), see figure 1(a), butwill be
discussed as case (b) in section 6. If, on the other hand the first work extraction process is a perfect one, weight
and systemnecessarily factorize and a second, imperfect, work extraction can be added. This will result in overall
imperfect transfer of 0∣ 〉 to w ( )S W

max ρ∣ 〉ϵ as a result of the total process instead of raising perfectly to
w ( )S W0

max ρ∣ 〉 in thefirst step alone. So one could have obtained the same result if one had allowed for imperfect
work extraction in thefirst place since an increase of ϵ always allows for an increase of work,
w w( ) ( )S S

max
0
maxρ ρ>ϵ . This shows that there is no second law conflict with afinal state being non-thermal.

5.Minimalwork cost of formation

Akeyfinding of the single shot thermodynamics approach presented in [1] is the realization that, in analogy to
entanglement of formation and distillation, thework required to form a non-equilibrium statemay differ from
thework that can be extracted from that state. Herewewill now re-derive theminimal cost of formation, wmin,

of engineeringwith certainty ( 0ϵ = ) a diagonal state Sσ from a thermal state S Z

e HS

S
τ = β−

, under thermal

operations.
Considering again global unitariesV that commutewith theHamiltonian, the desired operation is

w w 0 0 , (23)S B W
V

SB Wη τ τ σ η≔ ⊗ ⊗ ∣ 〉 〈 ∣ ⟶ ⊗ ∣ 〉 〈 ∣ ≔ ′

with anyfinal state permitted such that tr [ ]B SB Sσ σ= . Using the same reasoning that lead to equation (16) the
eigenvalues r E g f E( , , , )E

S S B W of the global initial state η in a particular energy shellE are given by

( )r E g f E
Z Z

, , ,
e

, (24)E
S S B W

E w

S B
E w

( )

,Wδ=
β− −

where gS and fB are the degeneracy indices labelling the various energy eigenstates forES and
E E E EB S W= − − , respectively. By construction the global eigenvalues are only non-zerowhen theweight has
energy E wW = and the non-zero eigenvalues in shell E are all equal.

The eigenvalues of the desiredfinal system state Sσ which is assumed diagonal in the system’s energy
eigenbasis E g{ , }S S∣ 〉 ofHS are denoted by s E g E g E g( , ) tr[ , , ]S S SB S S S Sσ= ∣ 〉〈 ∣ . The contributions stemming
from the energy shellE to the diagonal elements of thefinal system state Sσ may thus bewritten as

( )
( )

s E g E E f E g E g E E f, 0 , , , , 0 , (25)E
S S

f E E

S B S S S S S B

B S

∑ η= 〈 ∣〈 − ∣〈 ∣ ′ ∣ 〉∣ − 〉∣ 〉
−

where the sum is performed over all bath degeneracy indices at energy E E EB S= − .We note that since the
initial state has no off-diagonal elements between different system energies, say,ES and ES′, and the unitaryV
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commutes withHno such off-diagonal elements can be generated underV. Theremay be off-diagonal elements
within a single energy subspaceES, i.e. E g E g, , 0S S S S Sσ〈 ∣ ∣ ′〉 = . These off-diagonal elements can always be
‘avoided’ though by choosing the basis E g{ , }S S∣ 〉 for the system subspace of energyES appropriately. Thus,
w.l.o.g. the state Sσ can be assumed diagonal with diagonal elements as given in (25).

SinceV is unitary, not only the eigenvalues of the initial state η (in energy shellE) but also those of thefinal

state η′ (in energy shell E) are given by equation (24), i.e. they are either 0 or
Z Z

e E w

S B

( )β− −
. The summands on the rhs of

(25) are just expectation values of the state η′ and since any expectation value of a state is upper bounded by the
largest eigenvalue of the respective state wefind from (25)

( ) ( )
( )

( )
s E g

Z Z Z Z
M E E

Z

M E

Z
,

e e e ( )e
. (26)E

S S
f E E

E w

S B

E w

S B
B S

E w

S

B
E

B

( ) ( )

B S

S∑⩽ = − =
β β β β

−

− − − − − − −

The probability of thefinal state Sσ to be found in state E g,S S∣ 〉, denoted by s E g( , )S S , is then obtained by
summing over contributions from all the energy shells

( ) ( )
( )

s E g s E g
Z

, ,
e

, (27)S S
E

E
S S

E w

S

S∑= ⩽
β− −

where M E Z( )e
E B

E
B∑ =β− was used. Importantly this inequalitymust be fulfilled for all pairs E g,S S. Using

the eigenvalues of the thermal state of the system and rearranging one obtains

( )
( )

E g w
s E g

t E
, :

1
ln

,
(28)S S

S S

Sβ∀ ⩾

as the condition on thework cost of formation. One can see now that the energy eigenstate E g,S S
* *∣ 〉with the

largest ratio max
s E g

t E E g
s E g

t E

( , )

( ) ,
( , )

( )
S S

S
S S

S S

S

* *

*
μ= ≕ is the one that constraints thewhole transformation. The tight lower

bound on thework cost of formation is then

w w
1

ln : . (29)min

β μ⩾ =

μ can also be expressed as s E g t E E gmin{ : ( , ) ( ) , }S S S S Sμ λ λ= ⩽ ∀ or

{ }min : (30)S Sμ λ σ λ τ= ⩽

for Sσ the desired diagonal state of the system. Thework cost equation (29) for the idealmap equation (23) can
easily be extended to allowfinal states in an ϵ vicinity of the desired state Sσ . μ is then replaced by

inf min{ : }S SS
μ λ σ λ τ= ⩽ϵ σ

ϵϵ where Sσ ϵ is close to Sσ , S Sσ σ ϵ∣∣ − ∣∣ ⩽ϵ , where ·∣∣ ∣∣ is the trace norm [23].

6.Generalization ofwork extraction tomultiple levels in thefinal state of thework storage
system

Wehave seen in the previous section that the single shot concept gives sensible results for work extractionwhen
single levels of theweight are being considered (case (a) in figure 1).While for trulymicrosopic systems thismay
be a suitable analysis, case (a) is not the right picture formesoscopic ormacroscopic work extraction process. It
is not feasible to lift a work storage system from a true quantum energy eigenstate to another true energy
eigenstates. The density of states is so large that it will be practically impossible to pick a single eigenstate of a
macroscopic system [27]. This indicates that an extension of the single shot thermodynamic framework to
transitions betweenmultiple levels, see figures 1(b) and (c), is desirable.

The approach presented above now allows a straightforward generalization to thermal processes where the
work storage system is transferred from the ground state to not just a single energy level, but an interval δ of
energy levels, seefigure 1(b). To do sowewill now turn to a harmonic oscillator work storage systemwith energy
spacing EΔ , similar to the one considered in [16], and differing from the qubit work storage systemused in [1].
For simplicity wewill assume that also the system and the bath have oscillator-like equidistant energy eigenlevels
of integermultiples of EΔ . Again, theweight shall have no degeneracies whatsoeverwhile the system and bath
again have degeneracies M E( )S S and M E( )B B at their energies ES and EB, respectively.

Work extraction of an amount of work w̃ϵ is now identifiedwith the transition (with probability 1 ϵ− ) of
thework storage system from its ground state to any state living in the energy subspace w w[ ˜ , ˜ ]δ+ϵ ϵ , see
figure 1(b). The ideal transfer ( 0ϵ = ) is now associatedwith themap
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: 0 0 , (31)S B W
V

SBWη ρ τ σ= ⊗ ⊗ ∣ 〉 〈 ∣ ⟶

where thefinal state of theweight tr [ ]W SB SBWσ σ≔ is nowmixedwith support in the interval specified.Here the
general case of entangled states betweenweight and the rest is allowed. If the role of these correlations is of
interest, then restrictions to product states could be considered.

To account for the different (larger) space of possiblefinal states one simply has to restart the calculation of
ˆ E

finΠ and d E
fin, as detailed in section 3, and enlarge thefinalHilbert space in order to comprise allfinal global states

with theweight in the specified local energy subspace. This ‘new’finalHilbert space can be described as a sum
overmany ‘old’ ones. Restarting from (11) one can introduce a pertinent summation over weight energy levels
so that the new d E

fin reads:

d M E Z( ) e . (32)E
B S

E w

w
E

fin
˜

˜

W

W∑=
δ

β

=

+
−

The sumon the rhs nowdepends on the level spacing EΔ which did not play any role so far

( )( )
e e

e 1 e

1 e
, (33)

E w

w
E

n w E

w E

E n
w E

E
˜

˜

˜

˜ ˜ ( )

W

W∑ ∑= =
−

−

δ
β

Δ

δ Δ
βΔ

β β δ Δ

βΔ
=

+
−

=

+
−

− − +

−

where n is a natural number that labels the eigenvalues in the allowedfinal interval. Substituting this for e wβ− in
(11) then leads to

w w˜
1

ln
1 e

1 e
. (34)

E

E
max max

( )

β= + −
−ϵ ϵ

β δ Δ

βΔ

− +

−

Increasing thewidth δ of the allowed final energy regime for theweight beyond a single energy level ( 0δ > )
leads to an additional termwith respect to the singlefinal energy level situation characterized by equation (1).
For large energy intervals (δ) and small energy spacings ( EΔ ) the last expression quickly converges to

w w
E

˜
ln( )

. (35)max max βΔ
β= −ϵ ϵ

Expression (35) holds under the conditions that compared to the ‘thermal energy’, 1

β thefinal energy range is

large, 1δ ≫ β and the energy spacing of thework storage system, EΔ , is small E 1Δ ≪ β . Physically thismeans that
the final energy range δhas to comprise a large number of energy eigenstates of thework storage system.

Wenote that the extractable work w̃max
ϵ for case (b) infigure 1 is increased in comparison to the extractable

work wmax
ϵ of case (a) in the limit considered ( E 1Δ β≪ ). The surplus on the rhs does not depend on δ as long

as the above conditions are fulfilled.However, thework does varywith the level spacing and can go up to infinity
for E 0Δ → .

To judgewhether these conditions are fulfilled formeso/macro-scopic work storage systems, it is instructive
to consider realistic numbers. At room temperature the thermal energy is 2.5 101 2≈ ×β

− eV; about the

energy of a single optical phonon in a solid. Thus allowing afinal energy range of δ for themacroscopic weight
system that is large compared to the energy of a single phonon, condition 1δ ≫ β is fulfilled. For thework storage

systemone can imagine a pendulumwith eigenfrequency 1 Hzwhich results in an energetic level spacing of
E 4 10 15Δ ≈ × − eV 1≪ β thus fulfilling the second condition. Level spacings ofmanymeso/macro-scopic

work storage systems, such as batteries, are even smaller by several orders ofmagnitude. These example numbers
indicate that both conditions will generally hold formeso/macro-scopic systems.

Maybe surprisingly the additional term, Eln( )βΔ β− , is an up-shift as sketched infigure 1(b), implying a
work above that of equation (1). This seems to indicate a conflict of equation (35)with the second law, but this is
only a problem in a naive sense. To properly discuss second law violations onewould have to build a cyclic
machine that enables work extraction. It is possible to close the desiredwork extraction transformation,
equation (31), to a cycle, however, it is not possible to run the cycle again. This is because theweight started in an
energy eigenstate, 0 W∣ 〉 , while ending in a reduced state Wσ which is not an energy eigenstate. Therefore there is
no true second law violation as the process cannot be repeated using the sameweight. Exploring if there is a link
between the apparent violation of the second law in equation (35) and the existence of weight-system or system-
bath correlations [36–38] in the final state in equation (31) is an interesting future avenue.

Finally, the implication of equation (35) is that one can extractmore workwhen the final weight state is
allowed to live in a range of energy levels (b), rather thanwhen restricting to a single level (a).While this is
mathematically sound onemay find this physically counterintuitive as single shotwork is colloquially often
associatedwith aworst case scenario. The sketch infigure 1(b) intuitively suggests that theworst case result for
jumping from the ground state to a range of energy states is a single level transition to the lowest level, implying
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the lowest energy in (b) is the same as the single energy in (a), w w˜ = . However, this is not correct— the salient
point is that populations of energetic levels higher thanwwould not count as ‘success’ in the situation depicted
infigure 1(a). To achieve a high probability of success, 1 ϵ− , in (a) the population needs to be concentrated in
just that one level and this is what leads to a lower amount of extractable work in comparison to case (b), i.e.
w w˜ > . This new resultmay appear to contrast with a recent paper [39] that shows that allowing population in
higher levels should not change the ‘predicted’work.However, thework definition used there follows
traditional statistical physics concepts, without including aweight explicitly and involves sequences of shifting
energy levels in the systemHamiltonian and coupling the system to a bath [15, 40]. Thework concept thus
differs significantly from thework concept used here.

Now the question is how significant it is if theweight ends up exactly with energy, sayw, or with an energy in
a range, say w w[ , ]δ+ ? The second case is of relevance formanymechanical processes in physics and
engineeringwhere gainingwork is the key aim, and obtaining a littlemore energy would be judged positively.
There are other situationswhere resonancewith a particular energy value, i.e. case (a), is key for performance, for
instance, thismay be the case in biological energy conversion processes, such as photosynthesis [41].We
propose that thework ‘extracted’ in such resonance processesmay be described as ‘resonance work’ or ‘matched
work’. To decidewhich approach to use to calculate work, e.g. the single shot approachwith single level
transitions (a) ormultiple level transitions (b), or other approaches, one has tofirst identify what is really
needed— energy of a certain amount or energy above a certain threshold.

7.Generalization ofwork extraction tomultiple levels in the initial andfinal state of the
work storage system

We found that thework definition based on a ‘single energy level to single energy level transition’ of aweight,
case (a) infigure 1, is too narrow and at oddswith our notion of classical work storage systems. A physical
interpretationwas however possible in the context ofmatching a particular energy, i.e. in a resonance situation.
For the physicallymotivated extension tomultiplefinal levels, case (b) infigure 1, that corresponds towork
extraction in the sense of ‘at least thismuch ormore energy’ the predictions came out unphysical. So one is left
with the unsatisfactory situation that there is no consistent single shotwork extraction concept for general initial
andfinal states of theweight. Such extension issues have been recognized by others andmotivated a number of
recent publications that provide bounds on the single shotwork frommajorization [39] andfluctuation
theorems [42], address the shifting of general weight probability distributions [16], and employ axiomatic
approaches to identify sets ofmonotone functions that can act aswork quantifiers for specific situations [43, 44].

To try and rectify this situationwe here proceed to allowmultiple energy levels in both, the initial and final
state, as indicated in figures 1(c) and 3(c).Here one now faces the problemof definingwork on the basis of an
initial and afinal energy distribution of the weight.When theweight transfers frommultiple levels to other
multiple levels without ameans to distinguish any of these transitions, there is no single energy difference EWΔ
that can be straightforwardly linked towork. Even if one considers themultitude of energy differences associated
with the different single level transitions, it is challenging to formulate a ‘worst case scenario’ for the reasons
discussed in the previous section.Wewill here not attack the complicated problemof defining single shotwork
for transfers betweenmultiple levels of theweight, see figures 1(c) and 3(c), andfinding the optimumwork.
Instead, our aimherewill be tofind a transfer-quantity, whichwe denote w〈 〉, that indicates whether an initial
weight energy distribution can or can not be transformed into afinal distribution. To analyse the general

0 w ∼w ∼w+!"E EW

P(EW)

b

c

a

Figure 3.Weight energy probability distributions, P E( )W , over weight energy, EW. Sketched are (a) (green) a single level to a single
level transfer, (b) (orange) a single level to a range of levels transfer, (c) (blue) a range of levels to a range of levels transfer, see figure 1.
The particular choice of the distributions is not generic—the orange box shows the highest entropy state for that particular range, and
the initial and final blue distributions are chosen to be the same shape, implying that these distributions have the same entropy.
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multiple level scenario we consider again a global unitary (V) commutingwith the sumof localHamiltonians as
before and no restrictions on their spectra.Vmaps an initially factorized state to some final possibly correlated
state

: , (36)S B W
Vη ρ τ σ η= ⊗ ⊗ ⟶ ′

where the initial bath state is assumed thermal and theweight’sfinal reduced state is tr [ ]W SBσ η′ ≔ ′ . Various
transfers between different energy distribution of theweight are sketched infigure 3.

The average energy change of theweight on its own cannot be significant to limit thermodynamic
transformations. For example, a weight starting in the ground state can have its average energy raised just by
coupling it to a heat bath. Intuitively, the transfer-quantity should reward energy increase while punishing
spreading the energy across different energy levels of theweight. It is known that the free energy has exactly such
a balancing property and thismotivates us to define the transfer-quantity for bringing aweight from state Wσ to
state Wσ ′ as the free energy difference of theweight

w F U T S: . (37)W W WΔ Δ Δ〈 〉 = = −
Here U Htr[ ( )]W W W WΔ σ σ= ′ − and S k tr[ ln ] tr[ ln ]W B W W W WΔ σ σ σ σ= − ′ ′ + are the average energy
change and entropy change of theweight andT is the temperature of the initial bath state. Using sub-additivity of
the vonNeumann entropy it is straightforward to show, see appendix B, that the transition equation (36) can only
be possible when the transfer-quantity obeys at least the following inequality

( )w F F( ) . (38)S Sρ ρ〈 〉 ⩽ − ′

Here F F F U T S( ) ( )S S S S Sρ ρ Δ Δ Δ− ′ = − = − + is the free energy difference of the two, in general, non-
equilibrium system states Sρ and tr [ ]S BWρ η′ = ≔ ′ , with USΔ and SSΔ defined analogously to above, using
instead the systemHamiltonianHS. Note, that inequality equation (38) is necessary but not sufficient, i.e. there
are examples where this inequality is fulfilled and the transitionmay still not be possible. Equality in
equation (38) can only occurwhen the final global state factorizes with the final bath state being a thermal state,
see appendix B. Thus the bathBmust remain in a thermal state under the optimal work extraction process. This
clearly hints in the direction of the bound being reachable in the classicalmacroscopic limit as was suggested
in [1].

Nowone can consider special cases of this general relation. A subclass ofmap equation (36) are the single
level to single level transitions, sketched infigure 1(a) and infigure 3(a). The necessary condition for a
transformation S Sρ ρ→ ′ to be thermodynamically allowed here becomes

( )w w F F( ) . (39)
a

S Sρ ρ〈 〉 = ⩽ − ′

Tomaximizew one clearly wants to choose the final state thermal, S Sρ τ′ = , resulting in the highest permissible

value w F F( ) ( )S S
max ρ τ= − . In general one has F F( ) ( )S S

min ρ ρ<ϵ , and hence w wmax max<ϵ , with F ( )S
min ρϵ

approaching F ( )Sρ in the independent identical (i.i.d.) limit (infinitelymany identical copies) [1]. Thismeans
that inequality equation (39) is here a lesser requirement than the tight bound equation (1), giving just an upper
threshold of what transformationsmay be allowed.

Forweight transitions from a single level tomultiple levels, sketched infigure 1(b), the inequality gives

( ) ( )w F F F( ) . (40)
b

W S Sσ ρ ρ〈 〉 = ′ ⩽ − ′

So it is down to the choice of a suitablefinal weight state Wσ ′ to enable the transformation to be
thermodynamically possible. Figure 3(b) shows an example of a final energy distribution of theweight (orange
box). It can be seen that if onewas to shift up the final distribution in energywhile keeping the entropy the same,
F ( )Wσ ′ would grow thusmaking the inequality continuously tighter. The limit on how far the final weight
distribution can be shifted in energy and the transition still being allowed is given by the system’s free energy
difference.

For amultiple level tomultiple level transition, sketched infigure 1(c), an example initial weight distribution
is sketched infigure 3(c). If the energy distribution of theweight is solely shifted to a higher energywithout
changing its shape or entropy, as indicated in blue infigure 3(c), then the inequality reduces to

( )w U F F( ) . (41)
c

W S SΔ ρ ρ〈 〉 = ⩽ − ′

This result coincides with the tight bound derived for amore restrictive process inwhich global unitaries are
chosen to be of a specific formbut for which only average global energy conservation is required [16].

Condition equation (38) produces sensible results for the special cases discussed here.While for the
transformation to be thermodynamically possible fulfilling the condition is only necessary—not sufficient—
the condition’s strength lies in its applicability for general globally energy conserving transformations on initially
factorized states. Apart fromproviding an easy-to-check criterion to rule outmany potential weight transitions,
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calling the transfer-quantity ‘work’ can be supported, see e.g. [43]. Indeedwe observe that condition
equation (38) for the transfer quantity w〈 〉 is of the same form as thewell-known bound on the average work
W〈 〉 that can be extracted from a statistical ensemblewhen changing its probability distribution Sρ to another
probability distribution Sρ ′, e.g. in the context of Jarzynski’s equality [3]

W F , (42)SΔ〈 〉 ⩽ −

which is widely viewed as the second law of thermodynamics.

8.Discussion

Wehave re-derived the extractable work and thework of formation in the single shot setting proposed in [1],
where awork storage system (a) transfers from a single energy level to another single energy level with
probability 1 ϵ− . Our alternative derivation of the optimal work value for which such a transformation is still
possible was based on the comparison of subspace dimensions while no discussion of thermo-majorizationwas
required. (Thermo-majorization [1] offers an additional and separatemethod of addressing the same
optimization problem.) The approach presented here facilitates a discussion of thefinal state of the system after
work extraction has been performed. Indeed, wefind that typically the reduced final state is aminimum free
energy thermal state as has been suggested [1]. ‘Typically’ is here to be understood in the very same sense in
which it is often used in the context of thermalization studies: it is overwhelmingly frequent w.r.t. Haar
distributed unitaries [27–30]. The implication of thisfinding is two-fold: on one hand it should not come as a
surprise if a ‘work-extracted’ system is left in a thermal state, on the other hand the question of how far away
froma thermal state a systemmay end up for a specific, for instance physicallymotivated, unitary is a promising
direction for future research.

The presented approach opened the possibility to discuss a single shot work concept when transitions of the
work storage systembetween (b) a single energy level and a range of final energy levels is permitted. Extensions to
multiple levels are desirable to reflect experimental constraints— current and near-future experimental control
ofmeso/macro-scopic systems does not allow to distinguish between energy levels that are spaced by less than an
optical phonon.While the results for themultiple final level situation aremathematically sound, they raise
interpretation issues when applied to the physical context. Besides showing an apparent violation of the second
law that requires careful attention, an important conclusion emerges. The term ‘work extraction’ intuitively
suggests that an energy of a certain amount or higher is beingmade available but the ‘minimumextractable work’
found for case (b)was in fact higher than the single level case (a) and thus at oddswith physical intuition. The
single shotwork analysis thus turns out to be not a good setting for discussing ‘work extraction’. It is however
rather suited to characterize resonance processeswhere a specific amount of energy needs to be stored in thework
storage systemwith high probability. Due to its nature, the energy storedmay here be thought of as
resonance work.

Finally, the aimwas to considermultiple energy levels of thework storage system for both, initial and final
state.We have not tried to generalize the single shotwork extraction approach to this situation because of the
issues in physical interpretation that we could not fully resolve. Insteadwe provide ameans to decide whether a
transfer can be thermodynamically allowed or not by introducing a transfer-quantity w〈 〉 that we chose as the
free energy of the weight. The derived necessary bound, w FSΔ〈 〉 ⩽ − , is applicable for transformations with
general initial and final states of theweight. The bound is not tight in general, i.e. there are transformations that
fulfil the boundwhile still not being possible with the thermodynamic resources considered here.However, the
bound gives tight results for the single level case (a) when applied to N → ∞ i.i.d copies [1, 15] and to a set of
restricted global unitaries that results inmulti-level tomulti-level weight transfers [16]. Since the criterion is
fairly simple to apply it facilitates the discussion ofmany practical limits onwork extraction in the quantum
regime. To rephrase, while equation (38) is not precisely tight it is sufficiently tight to be relevant and thus itmay
be considered a valuable concept.
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AppendixA.Derivation of properties of thefinal states

This part of the appendix is dedicated to amore detailed derivation of the results on the final states discussed in
section 4.

We start by denoting the projector spanned by all eigenstates of the initial state η that have total energy E and

h E g( , ) 1S = by ˆ ( , )
E

iniΠ ϵ η . The dimension of this projector d ( , ) tr[ ˆ ( , )]E E
ini iniϵ η Π ϵ η= has already been

calculated in (14). By construction it equals the dimension d E
fin of the respective projector ˆ E

finΠ . Themaximum
work extraction itself simply consists in a unitaryVwhichmaps the initial subspaces on the respective final ones,
thereby respecting energy shells, which is the only condition onV. Asmentioned in section 4 the crucial point
here is that there is obviously not a single, unique unitary that corresponds tomaximumwork extraction but
infinitelymany. Since there are verymany unitaries theremay be potentially verymany different reduced states
of the system aftermaximumwork extraction. In order to better understand themultitude of final system states
it is instructive to consider unitaries which are randomly distributed according to theHaarmeasure. (Those
unitariesmay be constructed by drawing (column) vectors component-wise at randomand doing aGram-
Schmidt orthonormalization Formore details on averaging overHaar distributed unitaries see [26].) In the
followingwe outline some results on distribution of quantities generated by such randomunitaries without
(formal) proof.

Consider the unitarymappingV of somematrixA and a subsequent projection onto its diagonal part w.r.t.
some orthonormal basis n{ }∣ 〉 , i.e., n n VAV n n

n
†∑ ∣ 〉〈 ∣ ∣ 〉〈 ∣. The average over all such unitariesmay simply be

inferred from symmetry considerations:

n n VAV n n
A

d
n n

tr[ ] ˆ , ˆ , (A.1)
n

d

n

d

1

†

1

∑ ∑Π Π〈〈 ∣ 〉〈 ∣ ∣ 〉〈 ∣〉〉 = ≔ ∣ 〉〈 ∣
= =

where ·〈〈 〉〉denotes the average over all unitaries and d is the dimension of theHilbertspace, d tr[ ˆ ]Π= .
Denoting the sumover m d( )⩽ of the diagonal elements of this operator by s, wefind for the latter:

s n VAV n , (A.2)
n

m

1

†∑≔ 〈 ∣ ∣ 〉
=

wefind from (A.1) for the average of s:

s
m A

d

tr[ ]
. (A.3)〈〈 〉〉 =

It ismore subtle to compute the variance of s but it has been done, e.g., in the context of quantum typicality
[28, 30]. From the latter workswefind:

s s s
m

m

d
A

d d
( )

1 tr[ ]

( 1)
, (A.4)2 2 2

2⎜ ⎟⎛
⎝

⎞
⎠Δ ≔ 〈〈 〉〉 − 〈〈 〉〉 =

−

+

and for the relative deviation (setting d d1+ ≈ for simplicity)

s

s
s s

m

m

d

1
1 . (A.5)2 2 ⎜ ⎟⎛

⎝
⎞
⎠

Δ
〈〈 〉〉 ≔ 〈〈 〉〉 − 〈〈 〉〉 = −

Thus, ifm is sufficiently large, those relative deviations become (negligibly) small.Whichmeans even for a single
unitary drawn at random according to theHaarmeasure smay be expected to be given by s s≈ 〈〈 〉〉 for the
overwhelmingmajority of cases.

Equippedwith these findings wemay now identify the ‘typical’ local reduced final state of the system S. To
this endwe consider (A.1) andmake the identifications:

A: ˆ ( , ) ˆ ( , ), ˆ : ˆ , (A.6)
E E E

ini ini finΠ ϵ η η Π ϵ η Π Π

furthermorewe note that

A Ptr[ ] tr ˆ ( , ) ˆ ( , ) (1 ) . (A.7)
E E E

ini ini ini
⎡⎣⎢ ⎤⎦⎥Π ϵ η η Π ϵ η ϵ= = −

Let diagη ′ be the diagonal part (w.r.t. the product energy eigenstates of the uncoupled subsystems) of the full
systemfinal state that has actually changed underwork extraction, i.e. everything except for the ϵ-part that
remained unchanged, and Ediag,η ′ the state’s projection into the subspace of energyE. Then one finds from (A.1),
inserting (A.6) and (A.7):
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P

d

(1 ) ˆ
. (A.8)E

E E

Ediag,
ini fin

fin

η ϵ Π〈〈 ′ 〉〉 = −

Since PE
ini is invariant underV itmay be calculatedmost conveniently from (15). From this calculation it is found

to be actually independent ofE, i.e., the total probabilities on all energy shells are the same.Using (10) and (11)
yields

( ) ( )E E E w w
1

e
ˆ ˆ ˆ ( ). (A.9)E E

E

S S B S Wdiag,
S

∑η Π Π Π〈〈 ′ 〉〉 ∝ ⊗ − − ⊗β

At this point it is actuallymore convenient to go back to the original, local energies and sumover E E,S B rather
than E E,S . Doing so yields:

( ) ( )E E w wˆ e ˆ e ˆ ( ). (A.10)
E E

S S
E

B B
E

Wdiag
,S B

S B∑η Π Π Π〈〈 ′ 〉〉 ∝ ⊗ − ⊗β β− −

Using the index shift E w EB B− → , thismay be summed as

we e ˆ ( ) (A.11)H H
Wdiag

ˆ ˆS Bη Π〈〈 ′ 〉〉 ∝ ⊗ ⊗β β− −

which is (21) as given and discussed in section 4.
However, to conclude that the actual final state of the system S corresponding to a single randomunitary is

close to Ze H
S

ˆ
Sβ− and thus aminimum free energy state it remains to be shown that the relative deviations of

diagη ′ are small. To this end it is instructive towrite out the diagonalmatrix elements of the reduced final system

state tr [ ]S BWσ η= ′ explicitly

( )

( )
( )

E g E g P E E g

P E E g E g E f w E g E f w

, , , , ,

, , , , , , , , , , , (A.12)

S S S

E

S

S

f

M E

S S

fin

fin

1
diag

B B

∑

∑

σ

η

〈 ∣ ∣ 〉 =

≔ 〈 ∣ ′ ∣ 〉
=

where E g E f w, , , ,S∣ 〉 are the respective (product) energy eigenstates of the decoupled system. So a single
P E E g( , , )Sfin , i.e., a contribution to the respective diagonal element of the final reduced state of S from some
energy shellE, is itself a sumover verymany diagonal elements of the fullfinal state, asmay be seen from the
lower line of (A.12). Namely, it runs over all bath energy eigenstates at E E E wB S= − − , i.e., contains M E( )B B
summands. Thus from (A.5), setting m M E E w( )B S= − − , itmay be inferred that the relative deviations of the
contributions to the diagonalmatrix element are on the order of

( )
( ) ( )

P E E g

P E E g M E E w

, ,

, ,

1
, (A.13)

S

S B S

fin

fin

Δ
〈〈 〉〉

≈
− −

which is very small if the bath is large. This is (22) as given and discussed in section 4. Furthermore, if the
unitaries are drawn at random, the ÛE are independent of each other. Thus onemay conclude from (A.13) and
the central limit theorem, that according to the first line of (A.12), the relative deviations of E g E g, ,S S Sσ〈 ∣ ∣ 〉
will be even smaller ifmany energy shells are involved.

An analogous consideration (whichwe do not present here in full detail for brevity) applies to the off-
diagonal elements of thefinal reduced state of S. The analogue to (A.3) required tofind the average of those off-
diagonal elements reads [20]

n VAV n n n0 for . (A.14)†〈〈〈 ∣ ∣ ′〉〉〉 = ≠ ′
Thus, using the same identifications as before (A.6), on average off-diagonal elements of the full system final
state vanish. Since off-diagonal elements of reduced states are sums of off-diagonal elements of the full state
exclusively, the averages of the final reduced state of the system Sσ also vanish. Thus on average, thefinal state is
indeed diagonal in its energy eigenbasis. Furthermore only those (off-diagonal) elements of the full state for
which the full system states n n,∣ ′〉 ∣ 〉both correspond to the same bath system state E f,B∣ 〉 contribute to the
reduced state of S at all. Thus each contribution to the reduced state of Smay be associatedwith a certain energy
shellEB of the bath. An analogue to (A.4) quantifies the deviations of off-diagonal elements

o n VAV n n n( ) for , (A.15)2 † 2Δ ≔ 〈〈 ∣〈 ∣ ∣ ′〉∣ 〉〉 ≠ ′

14

New J. Phys. 17 (2015) 085006 JGemmer and J Anders



and reads, according to e.g. [20]

o
A

d d
( )

tr

( 1)
. (A.16)2

2⎡⎣ ⎤⎦Δ ≔ +

From (A.6) and (A.1) itmay be inferred that, Atr[ ] tr[ ˆ ( , )]
E2

iniΠ ϵ η⩽ and d tr[ ˆ ]
E

finΠ= . In section 6 is has been
established that both traces essentially scalewith the dimension of the bath, i.e.

M E M Etr ˆ ( , ) ( ), tr ˆ ( ). (A.17)
E

B
E

Bini fin
⎡⎣⎢ ⎤⎦⎥ ⎡⎣⎢ ⎤⎦⎥Π ϵ η Π∝ ∝

Thuswefind

o
C

M E( )
. (A.18)

B

Δ ⩽

whereC is a numberwhich is independent of the overall dimension of the bath. As M E M E E w( ) ( )B B S⩾ − − ,
this implies that the deviations of the off-diagonal elements of the reduced state of S again scale atmost as

M E E w

1

( )B S− −
, just like in the case of the diagonal elements, see (A.13). This result is also given and

discussed in section 4.

Appendix B.Derivation of upper bound to the state transfer quantity w〈 〉

This part of the appendix is dedicated to the derivation of (38) in section 7. In the remainder any state of the total
system, possibly including correlations, will be denoted by η. Reduced local states will be denoted by

tr [ ]S BWρ η= for the non-equilibrium system, tr [ ]W SBσ η= for theweight storage system, and tr [ ]B SWτ η= for

the bath. Just as beforeV transforms the total initial state η into the totalfinal state η′whichmeans V V †η η′ = .
And just as before we assume conservation of the sumof local energies, i.e., H H H V[ , ] 0S B W+ + = . Free
energies will be denoted as

F X U X
S X

S X X X( ) ( )
( )

with ( ) tr[ ln ], (B.1)β≔ − ≔ −

where X , , ,S W Bρ σ τ η≔ . Thus, free energiesmay refer either to parts or to the total system. The expectation
value of the respective energy is denoted byU(X) for the correspondingHamiltonian, H H H, ,S W B. Generally
primed operators will refer tofinal states and unprimed operators to initial states.

Again, as alsomentioned in section 7, we assume factorizing initial conditions, i.e., S B Wη ρ τ σ= ⊗ ⊗ .We

alsomake the assumption of the initial state of the bath is thermal, eB
HBτ ∝ β− . The only difference in the set up

of the approach in this section compared to sections 3–6 is that we do not require the state density of the
spectrumof the bath to be exponentially growing. By construction, the total entropy and the sumof local
energies are both invariant underV. Thus, the initial total free energy and the final total free energy are the same,
F F( ) ( )η η= ′ , and due to the factorizing initial conditionswe have

F F F F( ) ( ) ( ) ( ). (B.2)S B Wη ρ τ σ= + +

From theAraki–Lieb theorem [45] it follows that

( ) ( ) ( )S S S S( ) (B.3)S B Wη ρ τ σ′ ⩽ ′ + ′ + ′

and hence

( ) ( ) ( )F F F F( ) . (B.4)S B Wη ρ τ σ′ ⩾ ′ + ′ + ′

Combining (B.2) and (B.4) yields

( ) ( ) ( )F F F F F F( ) ( ) ( ) (B.5)S B W S B Wρ τ σ ρ τ σ+ + ⩾ ′ + ′ + ′

whichmay simply be rearranged as

( ) ( )( ) ( ) ( )F F F F F F( ) ( ) ( ) . (B.6)W W S S B Bσ σ ρ ρ τ τ′ − ⩽ − ′ − − ′ −

A thermal state has the lowest free energy given a specific inverse temperature β. Sincewe assumed an initial
thermal state for the bath it follows that F ( )Bτ is the lowest possible bath free energy. Consequently, whatever
F ( )Bτ ′ is, one has
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