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Abstract
Acentral topic in the emerging field of quantum thermodynamics is the definition of thermodynamic
work in the quantum regime.Onewidely used solution is to definework for a closed system
undergoing non-equilibriumdynamics according to the two-point energymeasurement scheme.
However, due to the invasive nature ofmeasurement the two-point quantumwork probability
distribution cannot describe the statistics of energy change from the perspective of the system alone.
Wehere introduce the quantumhistories framework as amethod to characterise the thermodynamic
properties of the unmeasured, closed dynamics. Constructing continuous power operator trajectories
allows us to derive an alternative quantumwork distribution for closed quantumdynamics that fulfils
energy conservation and is time-reversal symmetric. This opens the possibility to compare the
measuredworkwith the unmeasuredwork, contrastingwith the classical situationwhere
measurement does not affect thework statistics.We find that thework distribution of the unmeasured
dynamics leads to deviations from the classical Jarzynski equality and can have negative values
highlighting distinctly non-classical features of quantumwork.

1. Introduction

Einstein’s enquiry to Bohr if ‘theMoon does not exist if nobody is looking at it’ questions the indeterminate
nature of a quantum statewhen it is notmeasured [1]. Over the last century quantummechanics’ probabilistic
predictions have proven unshakeably successful despite their counterintuitive philosophical implications.While
quantum theory is inherently indeterministic, in classical statisticalmechanics stochastic fluctuations arise due
to ignorance about the state of the system. Classical statistical physics has elucidated that themacroscopic
thermodynamicwork, wá ñ, can be considered as an average over fluctuatingwork values,w, assigned to
individual trajectories in phase space taken by the system in each realisation of an experiment [2–5]. Today
research aims to link both quantumand classical stochasticity into a single quantum thermodynamic framework
[6]. Defining fluctuatingwork for quantumprocesses, andwith it a work distribution p(w) that characterises its
statisticalfluctuations, has been the subject of intense debate [7–15].

For closed quantum systems undergoing unitary dynamics afluctuatingwork value has been identified
within the two-pointmeasurement approach (TPM) [8, 9, 16]. Here the energy of the system ismeasured at the
beginning and end of the system’s evolution and thework,w, is taken to be the difference between these two
measured energies. The two-point definition of work has been used to derive quantumfluctuation theorems
[8, 9, 16–19], which have been tested experimentally [20, 21]. The TPM scheme has also been generalised to open
quantum systems [22–24]. The choice of the TPMwork definition has been supported by showing its direct
correspondencewith the classical definition of work in the semi-classical limit [11].

However, as discussed in section 2, the TPMwork distribution does not posses two properties that are
generally associated with closed dynamics: (i) energy conservation requiring that the average work is exactly
the internal energy change experienced by the system and (ii) the symmetry of the work distribution under
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time-reversal. The underlying cause for these two deviations is that, unlike in classical dynamics, the two
energymeasurementsmade in the TPM scheme affect the system dynamics in an irreversible way andmake
the system open [25].

To provide insight into how themeasurement affects thework statistics we here derive an alternative
quantumwork distribution, p(w), that characterises the closed, unmeasured quantumdynamics and fulfils the
two physical properties (i) and (ii). The benefit of constructing this unmeasured p(w) is that it allows the
comparisonwith the TPMdistribution for themeasured dynamics. This comparison elucidates the influence of
measurement on the statistics of work. Using the histories approach to quantummechanics [26–30]we
construct thework distribution function associatedwith the continuous dynamics of the system in the absence
of any experimentalmonitoring. Instead operator trajectories are introduced that describe the evolution in time
through the set of instantaneous eigenvalues of a time-dependent power operator [31, 32].We followGoldstein
and Page [29] in assigning linear probabilities to general interfering trajectories, or histories. This contrasts with
other approaches, such as [32–34], that are restricted to evolutions that have no interference between histories.
Wefind that the resultingwork distribution is a quasi-probability distribution, implying that for general closed
quantumdynamics fluctuatingwork cannot be interpreted as ameasurable systemproperty, whilemoments of
thework distribution arewell-defined andmeasurable.

Thuswhile in classical physics work is associatedwith a systemundergoing closed dynamics irrespective
of whether the system is observed or not, in the quantum regimework is an indeterminate property of the
non-equilibrium process.Measurements affect the quantumwork distribution in a similar way asmeasurement
collapses a quantum state. For commuting initial and finalHamiltonians of the dynamics we show that the
moments of the quasi-probability work distribution reduce to the TPMvalues.

The paper is organised as follows: in section 2we recap the TPM scheme and thework distribution
requirements (i) and (ii). The histories formulation of quantummechanics is introduced in section 3. In
section 4we use this framework to constructmulti time-step trajectories for a quantum system in analogy to the
classical phase space trajectories in statisticalmechanics.We then derive the time-reversal symmetric quantum
work distribution p(w) and discuss its properties, exposing clear quantum signatures. In section 5we compare
p(w)with a previously proposed power-basedwork distribution [32, 34]. A qubit example evidencing the
negativity of p(w) is discussed in section 6. In section 7we show that the TPMwork distribution can be recovered
as a special case in the histories framework. Table 1 summarises the differingwork statistics of the new
time-reversal symmetric quasi-probability work distribution and knownwork distributions.We summarise the
results and open questions in section 8.

2. Energy conservation, time-reversal symmetry and the TPMwork distribution

Wewill begin by formally introducing conditions (i) and (ii) alongwith the TPMwork distribution and show
that in general the conditions fail for the TPMwork.

Energy conservation. In quantummechanics the internal energy change, UD , of a system startingwith state
ρ andHamiltonianH(0) and endingwith state r t( ) andHamiltonian H t( ) in Schrödinger picture is universally
identified as

U H HTr 0 . 1t r t rD -≔ [ ( ) ( ) ( ) ] ( )

When the dynamics is closed, i.e. the state evolves unitarily according to V Vr t t r t=( ) ( ) ( )† , the
thermodynamicwork done on a system is associated entirely with the energy change experienced by the system,

w U H HTr 0 , 2H t rá ñ = D = -[( ( ) ( )) ] ( )

wherewe have changed into theHeisenberg picture, H V H VH t t t t=( ) ( ) ( ) ( )† . This equation can be
interpreted as an expression of the first law of thermodynamics for a closed systemwith no heat dissipation.

Classical non-equilibrium statistical physics and stochastic thermodynamics have shown that thework wá ñ
is to be understood as the average over the fluctuatingwork associatedwith various trajectories the system
undergoes in phase space [2, 4, 11]. Themeasuredfluctuatingwork values for each classical trajectory can be
recast into likelihood for a specificwork value,w, and hence a probability distribution forwork, p(w). This
probability distribution allows the calculation of themeanwork and higher workmoments,

w w p w wd . 3m mò=⟨ ⟩ ( ) ( )

Time-reversal symmetry.A central concept in statistical physics is the symmetry of the dynamics under
time-reversal. Physically one expects that a closed systemundergoing unitary dynamics has a work distribution
that is symmetric under time-reversal, i.e.
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p w p w . 4back = -( ) ( ) ( )

Consequently themoments, equation (3), would be anti-symmetric (odd powers) or symmetric (even). For
example, in a closed system the average change in energy in a reverse process is expected to be the negative of the
energy change experienced in the forward process.

TPM scheme.The extension of thermodynamics to incooperate quantumproperties requires the extension
of thework concept to general quantumdynamics.However, the definition offluctuatingwork,w, for the
simplest case of a closed quantum systemhas been subject to intensive discussion [7, 8, 10, 11, 14, 16, 31]. The
current standard approach is to define thefluctuatingworkwith the TPM scheme [8, 9, 16], where a system’s
energy ismeasured twice: once before the start of the evolution at time 0withHamiltonianH(0), and then after
the evolutionwith unitaryV t( ) at time τwithHamiltonian H t( ). In the TPM scheme the fluctuatingwork is
defined as the difference of the observed energies,

w , 5n m m n,
0� �= -t ( )( ) ( )

where n
0� ( ) and m�

t( ) are the energy eigenvalues of the initial and finalHamiltonian, respectively, in either
Schrödinger orHeisenberg picture. The joint probability associatedwithmeasuring these two energy
eigenvalues is [9]

p Tr , 6n m m n n m,
tpm 0 0r= P P P Pt t[ ] ( )( ) ( ) ( ) ( )

where the system’s state is ρ andwe havewritten the projectors onto thefinal energy eigenstates, mP t( ), in
Heisenberg picture, i.e. HH m

d
m m1 �t = å Pt t

=( ) ( ) ( ). By summing over all energetic differences that give the same
work value one obtains the quantumwork probability distribution for the TPM scheme [8, 9, 11]

p w w p . 7
n m

m n n m
tpm

,

0
,

tpm� �å d= - -t( ) [ ( )] ( )( ) ( )

However, as wewill now see for some initial states ρ and some evolutionsH(t) this work distribution does not to
satisfy the energy conservation requirement and time-reversal symmetry expected to hold for closed systems.
This is due to the invasiveness of quantummeasurements.

Using equation (3) and the quantumwork distribution p wtpm ( ) one finds that the average work in the TPM
scheme is

w H HTr Tr 0 , 8p w Htpm t h rá ñ = -[ ( ) ] [ ( ) ] ( )( )

where n n n
0 0h r= å P P( ) ( ) is the state of the systemprojected into the initial energy basis. Importantly, the

expectation value of thefinalHamiltonian in state η differs in general from the corresponding value for ρ. Thus
for initial states that have coherences in the initial energy basis [10, 12, 25, 35] the TPMwork distribution
p wtpm ( ) cannot describe the total conserved average fluctuations in energy given by equation (2).

In the TPM scheme thework distribution for the time-reversed process in Schrödinger picture is determined
by taking the evolved state r t( ), measuring the finalHamiltonian H t( ), applying the reverse unitary V † and
finallymeasuring the initial HamiltonianH(0). The associated time-reversed joint probability for two successive
energy outcomes is given by p Trm n n m m n, back

tpm 0 0r= P P P Pt t[ ]( ) ( ) ( ) ( ) . This expression is not symmetric to pn m,
tpm

given in equation (6)unless H, 0 0r =[ ( )] or H H, 0 0H t =[ ( ) ( )] . [36]. Therefore the TPMwork distribution
is not generally time-reversal symmetric, i.e.

p w p w , 9back
tpm tpm- ¹( ) ( ) ( )

reflecting the fact that the quantummeasurements performed act as a source of irreversibility [35, 37, 38].
This contrasts with the classical notion of workwhich is independent of whether the system ismeasured or

not.Herewewish to identify an alternative quantumwork distribution p(w) valid for universal unmeasured,
closed quantumdynamics that remains consistent with the two natural conditions (i) and (ii). To achieve this we
willmake use of the histories framework for quantummechanics, whichwe introduce in the following section.

3.Histories for closed quantum systems

The quantumhistories approach describes closed quantum systems andmakes predictions equivalent to
standard quantummechanics [26, 28–30, 39, 40]. This approach allows one to assign a probability-likemeasure
to quantum trajectories, also called histories, that extend the classical concept of trajectories in phase space. Here
we introduce the histories approachwhichwewill use in section 4 to derive a distribution function for quantum
work under closed non-equilibriumdynamics.

Let ρ be the initial state of a system in aHilbert space of finite dimension d.We consider the time-interval
0, t[ ]which is discretized into a set ofK time steps of duration t KtD = , with t j tj = D and j K0, 1, ,= ¼{ }.
The system is governed by a time-dependentHamiltonianH(t), which is decomposed into a discrete sequence in
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time H H tj
j≔ ( )( ) andwhich generates a sequence of unitariesV Vej H t ji 1j= - D -( ) ( )( )

withV 0 �=( ) and
V VK t= ( )( ) . AnyHermitian observable X t( ) discretized for time steps j can then be transformed into the
Heisenberg picture as X V X VH

j j j j=( ) ( ) † ( ) ( ). Throughout the remainder of the paperwewill work in the
Heisenberg picture unless stated otherwise. Thismeans that the state remains ρ at all times. For each time step j
the operator XH

j( ) can be spectrally decomposed, X x PH
j

n
d

n
j

n
j

1= å =
( ) ( ) ( ), with orthonormal projectors Pn

j( ) and
corresponding eigenvalues xn

j( ) for n d1, ...,= . Throughout the paper wewill assume non-degenerate
eigenvalues and choose 1� = .

A trajectory for an observable X tH ( ) is defined by a class operator [28]

C P P P P... , 10n n
K

n
K

n
j

K

n
j1 0

0

1

K K j1 0
, �= =
¬-

=

-

-
G · · ( )( ) ( ) ( ) ( )

where n n n n, , ..., K0 1=
G ( ) denotes the indices of a sequence of eigenvalues throughwhich the trajectory passes

at times tj, see figure 1.Here ,
¬

is the time-ordering operator that arranges the product of projectors from right
to left with increasing time. Trajectories are distinct when at least one eigenvalue nj in their sequence differs. The
set of all distinct trajectories, n

G{ }, forms a complete set, i.e.

C P P P... ... , 11
n

n
n n

n
K

n
K

n
1 0

K

K K

0

1 0
�å å å= ⋅ ⋅ =-

-G
G ( )( ) ( ) ( )

despite the class operators Cn
G not themselves being projection operators. FollowingGoldstein and Page [29]we

now associate a distribution for the trajectories similar to probability distributions associatedwith classical
trajectories:

p C C:
1

2
Tr , 12n n n r= +G G G[( ) ] ( )†

where ρ is the initial state and the dynamics is captured by the class operators Cn
G. This distribution is real and

normalised, p 1n nå =G G , due to the completeness of the class operators. However, it has been shown that for
certain choices of initial state ρ andHamiltonian H t( ) not all trajectories can be assigned a positive probability
[30, 39]. Therefore the distribution pn

G is in fact a quasi-probability distribution sharingmany features with the
quasi-probability distributions associatedwith quantum states in quantumoptics [41]. A demonstration of the
negativity of pn

G will be shown later in section 6.
It is nowpossible to group trajectories into histories by defining a class operator, Ca, for any set,α, of distinct

trajectories n
G{ }as the sumover the class operators of the trajectories in that set [28],

C C . 13
n

nå=a
aÎ

G
G ( )

Due to the linearity of equation (12), the probability for any set of trajectories is then given by the sumof the
individual probabilities for each trajectory in the set,

p p . 14
n

nå=a
aÎ

G
G ( )

By construction pa is real and bounded from above by 1 [30], but can have negative values.

Figure 1.Trajectories m x x x, , ,m m m
0 1 5
0 1 5

= ¼
G { }( ) ( ) ( ) (blue) and k x x x, ,..,k k k

0 1 5
0 1 5

=
G

{ }( ) ( ) ( ) (red) denote sequences of eigenvalues of the
operators XH

j( ) for a discrete set of times t t t t, , ,0 1 5= ¼{ }. For example, trajectory m
G
stays in the same eigenstate of the observables

XH
j( ) at each step in timewhile trajectory k

G
transfers between eigenstates.
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4. A quantumwork distribution frompower trajectories

Weare now ready to use the histories approach to identify a quantumwork distribution for the closed quantum
dynamics, i.e. thework that is done on the systemwhen nomeasurements aremade.

The classical notion of work as power integrated along a particular trajectory in timemotivates the choice of
the power operator, X t H t( ) ≔ ˙ ( ), as the observable to construct histories with [31, 32, 34]. Adopting the
notation of the previous sectionwe discretise the power operator in time and change intoHeisenberg picture,

X V H VH
j j j j= ˙( ) ( ) † ( ) ( ), where H j H

t

j

= ¶
¶

˙ ( ) ( )
. At each time tj the power operator eigenvalues are denoted xn

j
j

( ) with

corresponding projectors Pn
j

j

( ) with n d1, ,j = ¼( ) labelling the eigenvalues, see figure 1. The fluctuating work wn
G

for a particular power trajectory specified by n n n n, , ..., K0 1=
G ( ), is now identified as the eigenvalue of the power

operator at each time stepmultiplied by the length of the time step tD , summed over all time steps,

w x t. 15n
j

K

n
j

0

1

jå= D
=

-
G ( )( )

Following equation (13)we nowdefine the class operator for awork history as

C w w C , 16w
n

n nå d= -
G

G G[ ] ( )

where the sum is over the class operators Cn
G of all power trajectories that have the samework value w wn =G .We

finally obtain the distribution of the quantumfluctuatingwork (15) based onmulti time-step power trajectories
(10),

p w C C w w P P P
1

2
Tr Tr . 17w w

n
n n

K
n

K
n

1 0
K K 1 0år d r= + = - ⋅ ¼⋅-

-G
G

⎛
⎝⎜

⎞
⎠⎟( ) [( ) ] [ ] [ ] ( )† ( ) ( ) ( )R

Thiswork distribution for the unmeasured dynamics will be central for the subsequent discussion. It allows the
calculation of the averagework and highermoments according to equation (3), as well as the discussion of
properties of work under time-reversal.

Energy conservation.The averagework obtainedwith p(w) becomes

18

w w P P P t P x P P

t X

Tr Tr

Tr ,

n
n n

K
n

K
n

j

K

n
n

K
n

j
n

j
n

j

K

H
j

1 0

0

1
0

0

1

K K K j j1 0 0å å å

å

r r

r

á ñ= ⋅ ¼⋅ = D ⋅ ¼⋅ ⋅ ¼⋅

= D

-

=

-

=

-

-G
G

G

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

[ ] [ ]

[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

R R

wherewe have used the identities Pn n
j

j j
�å =( ) and x P Xn n

j
n

j
H

j
j j j

å =( ) ( ) ( ), and that the power operator is
Hermitian.

In the limit of infinitesimally small time steps, t 0D l , for afixed time interval τwe replace
t X H HH

j
H

j
H

j1D l -+( )( ) ( ) ( ) and obtain

w H H H HTr Tr 0 ,
j

K

H
j

H
j

H H
0

1
1å r t rá ñ = - = -

=

-
+[( ) ] [( ( ) ( )) ]( ) ( )

where H HH
K

H t= ( )( ) and H H 0H H
0 = ( )( ) .We note that it is the linearity of the probabilities in the class

operators, see equation (12), that allows the explicit summation over the trajectories and this results in the
contraction of the sumover power operators to the initial and finalHamiltonian only. This confirms that the
work distribution (17) in the continuum limit t 0D l reproduces the desired averagework, equation (2),
independent of the choice of state and unitary process.

Time-reversal symmetry.Wenow address the second desirable property for any definition of work, namely
time-reversal symmetry (ii). Physically ‘time-reversal’ refers to a reversal of the order of events in theHeisenberg
picture. In the histories approach thework history of a time-reversed closed process, determined by the
discretised sequence of power operators X X X, , ,H

K
H

K
H

1 0¼-( ) ( ) ( ), can naturally be assigned the class operator [29]

C w w P P P . 19w
n

n n n n
K0 1
K0 1å d= + ⋅ ¼⋅- G

G[ ] ( )† ( ) ( ) ( )

Here the projectors are time-ordered in reverse order, i.e. the time-reversed power trajectories are
C P P Pn n n n

K0 1
K0 1

= ⋅ ¼⋅G† ( ) ( ) ( ). Also, thework value associatedwith each time-reversed trajectory has obtained a
minus sign, see equation (15), as time has inverted, t tD l -D .

Applying this time-reversal to thework distribution equation (17)we trace the class operator with the same
state ρ and rearrange to obtain thework distribution of the unmeasured time-reversed process
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p w C C p w
1

2
Tr . 20w wback r= + = -- -( ) [( ) ] ( ) ( )†

This shows that in the histories approach the time-reversed process has awork distribution that is equal to that
of the forward process with a negative work value [29, 40]. This relation reflects the fundamental time symmetry
of the statistics of work in a closed quantum systemundergoing unitary dynamics.

Positivity.As shown in [30] theHermitian part of a product of projectors, see (12), generally has at least one
negative eigenvalue and that can lead to negative probabilities, pn

G, for some power-trajectories.While the
summation over various power trajectoriesmay result in a positive work distribution p(w) there are examples of
closed quantumdynamics where p(w) is negative for somework values thusmaking it a quasi-probability
distribution. An example of the negativity of thework distribution is discussed in section 6.

The occurrence of quasi-probability distributions used to represent a quantum state in phase space, such as
theWigner andDirac distributions, is a typical quantum signature [41, 42]. These quasi-probabilities contain
physical information about the state of the systemdespite not referring directly tomeasurement outcomes. For
example, theWigner function cannot be observed fromdirectmeasurements of position andmomentum.
Instead paritymeasurements aremade to reconstruct it experimentally [43]. Furthermore quasi-probabilities
naturally emerge fromweaklymeasured quantum systems. For example, theDirac function has been
determined for photon states byweakmeasurements of both position andmomentum [44, 45].

In the present context the emergence of a quasi-probability distribution characterises non-classical
behaviour of a non-equilibrium process rather than a state. The presence of negative ‘probabilities’ here indicates
that, in general, quantum fluctuatingwork cannot correspond tomeasurement outcomes, i.e. there is no
POVMwhose outcomes refer tofluctuatingwork values. Thuswork is an indeterminate property of a quantum
process, in contrast to classical notions of work. Thesefindings are in agreement with a recent no-go proof by
Perarnau-Llobet et al showing that it is not possible to assign a POVM tofluctuatingwork in an isolated
quantum systemwhilstmaintaining average energy conservation for all initial states alongside consistencywith
classical stochastic thermodynamics [15].

Highermoments of work.Thework distribution equation (17) has the desired properties (i) and (ii) given in
the Introduction.Wenowdiscuss further statistical properties of thework distribution, such as highermoments
and average exponentiatedwork, in the following. To determine the spread of thework distribution requires the
secondmoment of work, given as

21

w w P P P t x x P P P

t X X

Tr Tr

Tr .

n
n n

K
n

K
n

j i

K

n
n

j
n

i
n

K
n

K
n

j i

K

H
i

H
j

2 2 1 0 2

, 0

1
1 0

2

, 0

1

K K j i K K1 0 1 0å å å

å

r r

r

á ñ= ⋅ ¼⋅ = D ⋅ ¼⋅

= D

-

=

-
-

=

-

- -G
G

G

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

[ ] ( ) [ ]

( ) [ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

R R

In the last linewe have used that the expression is real as the two sums run separately, Xj
K

H
j

0
1å =

- ( ), and contract to
the sameHermitian operator. In the continuum limit t 0D l the secondmoment simplifies to
w H HTr 0H H

2 2t rá ñ = -[( ( ) ( )) ]. It is straightforward to generalise this derivation to themthmoment of
work for m 1, 2,= ¼{ }

w H HTr 0 , 22m
H H

mt rá ñ = -[( ( ) ( )) ] ( )
in the continuum limit t 0D l .

Equation (22) implies that for eachm the value of wmá ñcan bemeasured as the expectation value of the
observable H H 0H H

mt -( ( ) ( )) for state ρ. The quantumwork distribution can then be inferred from the
moment-generating function G l( ) [9],

p w G e d , 23wiò l l= l-( ) ( ) ( )

where G l( ) can be constructed from themeasured wmá ñas

G
m

we
i

Tr e , 24w

m

m
m H Hi

0

i 0H Hål
l

rá ñ = á ñ =l l t

=

¥
-( ) ≔ ( )

!
[ ] ( )( ( ) ( ))

where the summation has been carried out in the last line.
From expressions (22) and (24) onemay be tempted to define fluctuatingwork values as the eigenvalues of a

‘work operator’W w P H H 0k k k H Ht= å = -( ) ( ), where Pk are a set of projectors onto ‘work’ eigenstates, as
discussed in [7, 10]. As a consequence, in thework operator approach the fluctuatingwork values would be the
eigenvalueswk ofW. In this case work is identified as a property of the state rather than the process applied to the
state, with the range of possible work values given by the dimension of theHilbert space, in contrast to the TPM
scheme [8]. This runs counter to the usual assumption that thermodynamic work is a process-dependent
quantity, and so thework operator is often considered as a conceptually less favourable definition of quantum
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work [7, 10]. In contrast to thework operator, the histories framework explicitly defineswork in terms of
process-dependent trajectories that are not properties of the state alone, and the range of the possible work
values wn

G greatly outweighs the dimension of theHilbert space. The benefit of this approach is that it ismore
closely tied to the classical thermodynamic definition of work as power integrated along a given process. It is
interesting to observe that while both thework operator and histories approach produce the same set of work
moments, the statistical distributions are of course different. In particular, projectivemeasurements of thework
operator give a positive-definite probability distribution, in contrast to the quasi-probability equation (17). Thus
the two approaches significantly differ at the level of the individual probabilities assigned to each value of
fluctuatingwork.

Because of its central importance for the study of non-equilibriumwork in the classical regime, it is of
interest to seewhether the Jarzynski equality is satisfied by the quantumwork distribution p(w) defined in
equation (17). In the standard Jarzynski setup [2, 8], the initial state is chosen to be thermal with respect to an
environment at inverse temperatureβ, i.e. ZTr e H 0

0r = b-[ ]( ) with Z Tr e H
0

0= b-[ ]( ) the system’s partition
function. For a closed system that is brought out of equilibriumby its initial Hamiltonian becoming time-
dependent,H(t), the classical Jarzynski equality relates the average exponentiatedwork done on the systemwith
an equilibrium free energy difference, e ew Fá ñ =b b- - D . Here F Z Zln1

0D =
b t( ) is the free energy change

associatedwith the initial thermal state and a thermal state defined for thefinalHamiltonian, H t( ), at the same
inverse temperatureβwith partition function Z Tr e H=t

b t-[ ]( ) .
Using thework distribution p(w) derivedwith the histories approach and taking the continuum limit

t 0D l , the average exponentiatedwork can be obtained by setting il b= in equation (24),

e Tr e . 25w H H 0H H rá ñ =b b t- - -[ ] ( )( ( ) ( ))

Inserting a thermal initial state one can see that the standard Jarzynski equality is no longer generally satisfied,

Z Ze Tr e e Tr e e , 26w H H H H F0 0
0 0H H H.á ñ = =b b t b b t b- - - - - - D[ ] [ ] ( )( ( ) ( )) ( ) ( )

where H H0 0H =( ) ( ) and the identity V V ZTr e Tr eH HH t t= =b t b t
t

- -[ ] [ ( ) ( )]( ) † ( ) has been used.Here
theGolden–Thompson inequality e e eTr TrA B A B. +[ ] [ ]has been appliedwhere equality holds if and only if
A andB commute [46]. Thus, in general, the average exponentiated work is greater than the exponentiated free
energy change. The standard Jarzynski equality for an initial thermal state only holdswhen theHamiltonians (in
Heisenberg picture) commute, H H, 0 0H Ht =[ ( ) ( )] . In Schrödinger picture this condition translates into
H V V, e 0H 0t =b-[ ( ) ]( ) † , i.e. the final state after the unitary evolutionmust be diagonal for thefinal
Hamiltonian [25]. This condition can be thought of as the classical limit demonstrating that one recovers the
original Jarzynski equality.

Inequality (26) based on thework distribution p(w) thus exposes quantum signatures of work in general
quantumnon-equilibriumprocesses. This contrasts with the TPMapproach, in equation (7), which shows the
validity of the (classical) Jarzynski equality for an initial thermal state and any choice of time-dependent
Hamiltonians [8]. This result demonstrates that when extending fluctuation relations to the quantum regime
modifications can arise from coherences, as has been suggested previously [47, 25].We note that the derivation
of inequality (26) assumes an initial thermal state, contrasting with previous discussions of quantum signatures
in the average exponentiatedwork byAllhaverdyan, Solinas et al andElouard et al that have focussed on non-
thermal initial states [10, 12, 35]. The properties of p(w) are listed in table 1 andwill be comparedwith another
power-operator-basedwork distribution [32, 34] in section 5. Before thatwewillfirst discuss the connection to
the TPMdefinition of work.

Recovering the TPMwork distribution.Herewe illustrate for a particular example the underlying difference
between the two distributions, themeasured p wtpm ( ) and the unmeasured p(w).We let theHamiltonian depend
on time solely through its eigenvalues while the projectors on the eigenstates are time-invariant, i.e.
H t E tn n n= å P( ) ( ) . The unitary generated by thisHamiltonian is thenV t e ti n n n= f- å P( ) ( ) with

t E t tdn
t

n0òf = ¢ ¢( ) ( ) . The power operator (in eitherHeisenberg or Schrödinger picture) is then

X t E tn n n= å P( ) ˙ ( ) and the time-discretised eigenvalues belonging to the projectors n
j
j

P( ) are defined as

x E t E E tn
j

n j n
j

n
j1

j j j j
= = - D+˙ ( ) ( )( ) ( ) ( ) in the limit t 0D l . These power operator eigenvalues describe the

variation of a specific energy eigenvalue, labelledwith nj, with time j j 1l + . Using the power operator
definition of thefluctuatingwork, equation (15), for a trajectory n

G
one obtains

w E E E E E E

E E E . 27

n
j

K

n
j

n
j

j

K

n
j

n
j

j

K

n
j

n
j

n
K

n n

0

1
1

0

1
1

0

1
1 1

0

j j j j j j

K

1 1

0

å å å= - = - - -

- - D

=

-
+

=

-
+

=

-
+ +

+ +
G

G

( ) ( ) ( )

≕ ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
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In thefirst linewe have split the sum into two terms. Thefirst termdescribes the energetic jumps from level nj at
time j to a different level, i.e. nj 1+ , at time j 1+ . The second term, for which the symbol EnD G has been
introduced, describes the energetic difference between the two levels nj and nj 1+ belonging to different
projectors n

j 1
j

P +( ) and n
j 1
j 1

P +
+

( ) of a singleHamiltonian at time step j 1+ .
While the second term vanisheswhen summed over all trajectories,

E E E 0, 28
n

n
j

K

n
n

j

n
n

j

0

1
1 1

j

j

j

j

1

1å å å åD µ - =
=

-
+ +

+

+G
G

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )( ) ( )

thework distribution (17)will depend on individual EnD G. Onlywhen this dependence is neglected and under an
additional assumption (one pair of the three operators H, 0r and HH t( ) have to commute) can the TPMwork
distribution be recovered, as will be discussed in section 7.

5. Comparisonwith other power-operator-basedwork distributions

The histories framework and the resultingwork distribution p(w) for the unmeasured dynamics differ from
previous proposals to define fluctuatingwork using the power operator [32–34, 48]. In those proposals the
power is continuouslymeasured leading to awork probability distribution given as

p w w x t C CTr . 29
n j

K

n
j

n n
0

1

jå åd r= - D
=

-

G
G G

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥˜ ( ) [ ] ( )( ) †

This distribution differs from p(w) in equation (17) by the probability p C CTrn n n r=G G G˜ [ ]† which is nonlinear in
the class operators Cn

G assigned to each power trajectory n
G
. Aswewill see in this section the distribution p w˜( ) is

normalised and also positive, but p w˜( ) does not satisfy the desired physical conditions (i) and (ii).
Energy conservation.We illustrate that thework probability distribution p w˜( ) does not generally satisfy

average energy conservation, equation (2), using an example. Let theHamiltonian of the systembe of the form
H t A t Bl= +( ) ( ) , whereA andB are time-independentHermitian operators while tl ( ) is a real, time-
dependent scalar function [32], then the power operator in theHeisenberg picture is X t t B tH Hl=( ) ˙ ( ) ( ). At
each discrete point in time, labelled again by j, the operator B b PH

j
n n

j
n

j
j j j

= å( ) ( ) ( ) is spectrally decomposed into its

eigenvalues bn
j

j

( ) and projectors Pn
j

j

( ). As shown in [32] in the limit of small tD thework distribution p w˜( )
becomes

p w w b P0 Tr . 30
n

n n
0 0

0

0 0åd l t l r= - -˜ ( ) [ ( ( ) ( )) ] [ ] ( )( ) ( )

Here only the eigenvalues bn
0
0

( ) of the power operator B BH
0 =( ) at the start of the evolution appear. Using the

probability distribution p w˜( ) the averagework done on the system is,

w B B H HTr Tr 0 Tr Tr 0 . 31p w l t r l r t r rá ñ = - = -[ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] ( )˜( )

Table 1.Comparison between thework quasi-probability distributions p(w) given in equation (17) and p wMH ( ) given in equation (40) and
thework probability distributions p wtpm ( ) given in equation (7) and p w˜( ) given in equation (29).

(i) (ii) (iii) operator (iv) steps (v) energy conservation (vi) time-reversal symmetric (vii) JE satisfied

p wtpm ( ) + H 2 r" , H H, 0 0H t =[ ( ) ( )] r" , H H, 0 0H t =[ ( ) ( )] H t" ( )
or HH t" ( ), H, 0 0r =[ ( )] or HH t" ( ), H, 0 0r =[ ( )]

p(w) − X K l ¥ r" , H t" ( ) r" , H t" ( ) H H, 0 0H t =[ ( ) ( )]
p w˜( ) + X 1 r" , H HH t t=( ) ( ) C CTr , 0n w n n rå =ÎG

G G[ [ ] ]† , w" H HH t t=( ) ( )
p wMH ( ) − H 2 r" , H t" ( ) r" , H t" ( ) H t" ( )

Note. The columns refer to: (i) symbol of work distribution, (ii)work distribution is positive in general (+) or can be negative for some
states and evolutions (−), (iii) operator used to establish the work distribution: power operatorX orHamiltonianH, (iv) number of
points in time considered in the construction of the work distribution forΔt→0. Columns (v), (vi) and (vii) list conditions under which
the work distributions satisfy energy conservation in the limitΔt→0, time-reversal symmetry, and the Jarzynski equality (JE) assuming
an initial thermal state and the limitΔt→0. All four work distributions become equal in the classical limit where ρ, HH (0) andHH ( t )
commute.
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This average work differs in general from the first law stated in equation (2) because the finalHamiltonian,
H t( ), is here in the Schrödinger picture but the expectation value is taken for the initial state rather than for the
time-evolved state. Indeed as discussed in [32], the physical situation characterised by the distribution p w˜( ) is
onewhere the dynamics of the system is frozen by the initial projectivemeasurement. The occurrence of this
quantumZeno effect is reflected in the expressions in equations (30) and (31). It can be seen that p w˜( )will satisfy
energy conservation for all initial states ρ in the special case that H HH t t=( ) ( ). Like p(w) the distribution p w˜( )
is found [32]not to obey the Jarzynski equality unless one has H HH t t=( ) ( ).

Time-reversal symmetry.Thework distribution for the time-reversed process, p wback˜ ( ), is defined by
exchanging each class operator Cn

G in equation (29)with its time-reversed counterpart Cn
G†, see equation (10), and

changing the sign forw to reflect the fact that we are considering the time reversed unitary evolution.One
obtains

p w w w C C p w w w C CTr Tr , , 32
n

n n n
n

n n nback å åd r d r= + = - + +
G

G G G
G

G G G˜ ( ) [ ] [ ] ˜ ( ) [ ] [[ ] ] ( )† †

where thework wn
G for each power trajectory is again given by equation (15), see (29). For thework distribution

equation (29) to satisfy time-reversal symmetry, the class operators for the power historiesmust obey
C CTr , 0n w n n rå =Î

G G G[ [ ] ]† for all work valuesw.Wewill discuss an example showing that this condition is in
general not fulfilled in the next section. The physical properties of p(w) and p w˜( ) are listed in table 1.

6. Example: two-level system in an oscillatingfield

To illustrate the histories approach and the negativity of themany-point work distribution p w( )wehere discuss
the example of a qubit driven by an oscillating field,

H t
g

t t
2 2

cos sin , 33z x ys s s=
W

+ W + W( ) ( ( ) ( ) ) ( )

where x y z, ,s are the Pauli spinmatrices,Ω is the free frequency of the qubit system and g is the coupling strength
of the qubit to the externalfield. Allahverdyan previously used thismodel [10] to demonstrate the negativity of a
two-point work distribution denoted by p wMH ( ), which is defined below in equation (40). Herewewill consider
a discretised formof thework distribution equation (17) in order to demonstrate the negativity of the
distribution. The time-dependentHamiltonian generates a unitary

V t e e , 34t g ti 2 i 2z x= s s- W -( ) ( )

which can be verified by substituting into the evolution equation, V t H t V ti t¶ =( ) ( ) ( ) [10]. The power
operator in theHeisenberg picture is then given by

X t
g

gt gt
2

cos sin , 35H y zs s=
W

-( ) ( ( ) ( ) ) ( )

and has a time-dependent eigenbasis while the eigenvalues, x g 2= o W , are time-independent.
To simplify the subsequent calculationwe choose to discretise time into time steps of length t g2pD = ( ),

such that the time-discretised power operators oscillate between ys and zs . I.e. for thefirst four time steps the
power operator becomes X g 2H y

0 s= W( )( ) , X g 2H z
1 s= - W( )( ) , X g 2H y

2 s= - W( )( ) and X g 2H z
3 s= W( )( )

and then this sequence repeats every set of four steps. The eigenstates of XH
j( ) with eigenvalues g1 2nj- W( ) , for

n 0, 1j = , can be cast in the form

j n i n, 1 1 . 36j
l

K
l

j l
n

j l j
0

1

,2 ,2 1jå d dñ = - - ñ - ñ
=

-

+∣ ( ) ( ∣( ) ∣ ) ( )

Dependingon jbeing evenorodd, the eigenvectorswill be either the eigenvectors i i i0 1 2 ,+ ñ = ñ + ñ - ñ =∣ (∣ ∣ ) ∣
i0 1 2ñ - ñ(∣ ∣ ) of ys or the eigenvectors 0 , 1ñ ñ∣ ∣ of zs for the eigenvalues+1,−1. The total time of evolution, τ,

is determined by the total number of time steps,K, i.e. K g2t p= ( ).
From equation (15) for a given sequence n n n n, , , K0 1= ¼

G ( ) thefluctuatingwork in this example is
w 4 1n j

K n
0
1 jp= W å -=

-G ( ) ( ) . Themany-point work distribution based on the histories approach becomes,
according to equation (17),
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p w w p

p n K n j n j n

4 1 ,

with 0, , 1, , , 37

n j

K
n

n

n K
j

K

j j

0

1

0
0

1

1

jå å

�

d p

r

= - W -

= á ñ á + ñ

=

-

=

-

+

G
G

G

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( ) ( )

∣ ∣ ∣ ( )R

wherewe have used the cyclic property of the trace.Meanwhile the probability distribution p w˜( ) obtainedwith
continuousmeasurement of the power operator, equation (29), is given by

p w w p

p n n j n j n

4 1 ,

with 0, 0, 1, , . 38

n j

K
n

n

n
j

K

j j

0

1

0 0
0

1

1
2

jå å

�

d p

r

= - W -

= á ñ á + ñ

=

-

=

-

+

G
G

G

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥˜ ( ) ( ) ( ) ˜

˜ ∣ ∣ ∣ ∣ ∣ ( )

We immediately see that the structure of pn
G in (37) and pn

G˜ in (38) is general when j n, jñ∣ denotes the

eigenstates of general power operators XH
j( ). Differences between p(w) and p w˜( ) can nowbe identified: pn

G˜ is a
product of transition probabilities, j n j n1, ,j j1

2á + ñ+∣ ∣ ∣ , and thus p w˜( ) becomes a real and positive probability
distribution. In contrast the distribution p(w) is formed by (the real part of) a product of transition amplitudes,
j n j n1, ,j j1á + ñ+ ∣ , andwhile it is real and normalised, the distribution can have negative values for some initial

states ρ. This feature is illustrated infigure 2, where the cumulative distributions, Q w p w wd
w

ò= ¢ ¢
-¥

( ) ( ) are

plotted for p(w) and p w˜( ) for an initial thermal state Hexp 0r bµ -( ( )). One can see that the cumulative
distribution for p(w) decreases for certain values of workw, demonstrating the negativity of this quasi-probability
distribution.Note that the breaking of the time-reversal symmetry of the distribution p w˜( ) is clearly evidenced
by the fact that the initial probability for state n0, 0ñ∣ appears at the start of the chain, see equation (38),
contrastingwith the symmetric inclusion of both n0, 0ñ∣ and K n, Kñ∣ for p(w) seen in equation (37).

In the next sectionwe show that rather than defining awork distribution by time-integrating over
continuous power-trajectories it is also possible to define a time-reversal symmetricwork quasi-probability
distribution, denoted p wMH ( ), that is based on just a two-time energy trajectory.Wewillfind that in the special
case that the initial state ρhas no coherences with respect to the initial HamiltonianH(0) one recovers the
standard TPMdistribution, p wtpm ( ).

7. Two-point energyMargenau–Hill work distribution

Wenow adopt the TPM’s fluctuatingwork definition equation (5) that refers to energy eigenvalues rather than
power operator eigenvalues. Herewewill consider the relevant observable X t H t=( ) ( ) as the system’s time-
dependentHamiltonian, with HH

j
n
d

n
j

n
j

1j j j
�= å P=

( ) ( ) ( ) denoting the spectral decomposition of theHamiltonian

at time tj in theHeisenberg picture.Here n
j
j

P( ) are the projectors onto the energy eigenstates of theHamiltonians

HH
j( ). Thismotivates the construction of energy trajectories rather than power trajectories and the class operator

for awork historywithfluctuatingwork valuesw can nowbe identified as

Figure 2.Plot of cumulative work distributionQ(w), see text, over work valuesw for thework distribution p(w) (red) and thework
probability distribution p w˜( ) (blue), given in equations (37) and (38), respectively. Here theHamiltonian is given in (33), the time
steps are of length t g2pD = , the total number of steps isK=15, and the initial state is thermal with respect to the initial
Hamiltonian, ie. Hexp 0r bµ -( ( ))with 0.1b = .
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C w . 39w
n n

n
K

n n
K

n
tpm

,

0 0

K

K K

0

0 0
� �å d= - - P P[ ( )] ( )( ) ( ) ( ) ( )

The summation over the intermediate time-steps has been carried out because thework value in the TPM
scheme only depends on the initial andfinal energy. The remaining summation over initial and final energy
eigenvaluesmakes sure that different energetic transitionswith the same fluctuatingwork value are included.

Using definition (14) thework distribution function nowbecomes

p w w p 40
n n

n
K

n n n
MH

,

0
,

MH

K

K K
0

0 0
� �å d= - -( ) [ ( )] ( )( ) ( )

where p : Trn n n
K

n n n
K

,
MH 1

2
0 0

K K K0 0 0
r= P P + P P[( ) ]( ) ( ) ( ) ( ) are joint probabilities known as theMargenau–Hill

distribution [49]. This distribution is a generalisation of the two-point joint probability pn n,
tpm

K0
given in

equation (6), that is associatedwith the outcomes of two successive projectivemeasurements in the TPM
scheme [36]. pn n,

MH
K0
gives the correctmarginals of initial and final state and recovers the TPMwork probability

distribution, pn n,
tpm

K0
, when at least one pair of the operators ρ,H(0) or HH t( ) commute. The assumption that

one of the commutators is zero is oftenmade, including derivations of the quantum Jarzynski equality
[8, 9, 11]where the initial state commutes with the initialHamiltonian. In general, the work distribution
p wMH ( ) is not positive-definite. For unitary dynamics of states that do have coherences in the initial
Hamiltonian basis the work distribution p wMH ( ) has previously been proposed by Allahverdyan [10], andwas
shown tominimise themean-squared uncertainty between the final and the initial Hamiltonian. Another
two-point work quasi-probability distribution that obeys the first law and fulfils the Jarzynski equality has
been proposed by Solinas andGasparinetti [12]which is based on the full-counting statistics.

The quasi-probability distribution p wMH ( ) gives theworkmoments

w p
m

l
H H

1

2
Tr , 0 , 41m

p w
n n

n
K

n
m

n n
l

m

H
l

H
m l

,

0
,

MH

0K

K K
MH

0

0 0
� �å å t rá ñ = - = -

=

-
+⎜ ⎟⎛

⎝
⎞
⎠( ) [{( ( )) ( ( )) } ] ( )( )

( ) ( )

where , +{ } denotes the anti-commutator. Notably form=1 this relation produces the correct averagework
inlinewith equation (2). Form=2 it produces the same secondmoment as that of the power-based distribution
p(w), of the form (22). However, unless theHamiltonians commute, i.e. H H, 0 0H Ht =[ ( ) ( )] , higherwork
moments arising from theMargenauHill distributionwill differ fromhighermoments for the continuous
histories distribution, given in equation (22). One consequence of this difference is that the average
exponentiatedwork for theMargenau–Hill distribution does produce the standard Jarzynski equality [10].

The quasi-probability distribution p wMH ( ) also shares the time-reversal symmetry of the classical work
distribution for a closed system, reflecting the fact that the dynamicsmust be reversible. This follows
straightforwardly with the same argument as in (20).We thus conclude that the alternative two-point quasi-
probability p wMH ( ) is also consistent with our desired conditions (i) and (ii), whilst leading to an alternative set
of higher ordermoments than the set equation (22). In the classical limit inwhich ρ,H(0) and HH t( ) commute,
themoments associatedwith both p wMH ( ) and p(w) in the continuum limit t 0D l converge to themoments
given by the two-projectivemeasurement distribution, p wtpm ( ). In turn this distribution becomes the classical
work probability distribution [11]. To summarise ourfindings the properties of the four different distributions
forwork discussed in this paper are presented in table 1.

8.Discussion

While in classical thermodynamics the act ofmeasurement leaves no influence on the statistical properties of the
system, in quantummechanics one faces a dilemma: either onemeasures the fluctuatingwork and accepts
disturbing the system, or one does not disturb the systembut then there is no data to read off the fluctuating
work value.Herewe showed that it is however possible to define the alternative work distribution p(w)
associatedwith the latter unmeasured dynamics. Constructing the unmeasuredwork distribution is of interest as
it allows the comparisonwith themeasured, TPMwork distribution.While in the classical limit both
distributions are the same, in the quantum case it is insightful to discuss their physical differences.

To determine p(w)we introduced the histories approach to quantum thermodynamics, which allows the
construction of operator trajectories analogous to classical trajectories in phase space.We found that in contrast
to the TPMdistribution, thework distribution p(w) fulfils energy conservation and time-reversal symmetry for
general initial states and unitary evolutions.Moreover, for p(w) the Jarzynski equality is not fulfilled in the
continuum limit t 0D l , contrary to thework distribution arising from the TPM scheme. This deviation arises
solely due to non-commutativity ofHamiltonians at different times.

Aswe demonstrated for an example in section 6, the resulting p(w) is not positive for all closed dynamics and
is thus a quasi-probability distribution. The emergence of negative probabilities highlights a distinctly non-
classical feature of quantumwork, reminiscent of other quasi-probabilities found in quantummechanics, such
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as theWigner function andDirac distributions [41, 50]. The negativity of the quasi-probability pn
G,

equation (12), for general operator trajectories has been shown to lead to violations of the Leggett–Garg
inequality [51]which indicates the failure of (classical)macro-realism. The negativity of p(w) implies that the
fluctuatingwork valuesw cannot correspond to outcomes ofmeasurements—if they did then p(w)must be a
positive probability distribution.

Within the histories approachwe first used, analogously to the classical work definition, power trajectories
that are integrated over time to construct p(w) in equation (17).We secondly constructed awork distribution
p wMH ( ) in equation (40) that identifiesworkwith the energy change between end and start points of energy
trajectories. Naively onemay expect these two distributions to be the same in the continuum limit t 0D l , i.e.
that thework for closed dynamics can be found by either integrating along the trajectories or by just considering
the end points. Surprisingly however, in general the two distributions have differentmoments thus there is a
difference between fluctuating energy change (end points) and fluctuatingwork (trajectory) even in an
unmeasured closed quantumprocess. This shows that theway inwhich one defines quantumwork has physical
consequences for thermodynamic relations, such as the Jarzynski equality.

Experimentally, quasi-probabilities commonly emerge inweakmeasurement schemes. In particular, the
quasi-probability p wMH ( ) can be obtained throughweakly coupling the system to a pair of external detectors
[44, 45].We expect that similar weakmeasurement schemes, such as [12, 52], can be adapted tomeasure the
continuous closed dynamics described by p(w), and detect violations of the Jarzynski equality, see equation (26).
The presented histories approach to quantum thermodynamics provides new insight into the non-classical
properties of work in the quantum regime. The continuous trajectories picture offers comparisonwith the
two-timeTPMapproach and highlights the effect of quantummeasurement on the laws of thermodynamics.

Future researchwill be required to construct an extension of the developedwork concept to open systems
and to analyse detailed fluctuation relations, such as Crooks’ relation [3].Moreover, it would be insightful to
understand the link between thework definition based on the continuous operator trajectories used in the
histories approach and other continuous quantum trajectory approaches. For example, for open quantum
systems themicroscopic quantum trajectories picture ‘unravels’ themaster equation into an ensemble of
stochastically occurring trajectories [53, 54]. Only recently has the quantum trajectories approach been used to
identify fluctuatingwork aswell as quantumheat contributions [13, 35, 55], while non-equilibrium entropy
production has been discussed in [55]. The classical correspondence could further be elucidated [11] by
translating the operator trajectories into the path integral formulationwhich relies on summing over all
trajectories in phase space [56].
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