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At nonzero temperature classical systems exhibit statistical fluctuations of thermodynamic quantities arising
from the variation of the system’s initial conditions and its interaction with the environment. The fluctuating
work, for example, is characterized by the ensemble of system trajectories in phase space and, by including
the probabilities for various trajectories to occur, a work distribution can be constructed. However, without
phase-space trajectories, the task of constructing a work probability distribution in the quantum regime has proven
elusive. Here we use quantum trajectories in phase space and define fluctuating work as power integrated along
the trajectories, in complete analogy to classical statistical physics. The resulting work probability distribution
is valid for any quantum evolution, including cases with coherences in the energy basis. We demonstrate the
quantum work probability distribution and its properties with an exactly solvable example of a driven quantum
harmonic oscillator. An important feature of the work distribution is its dependence on the initial statistical
mixture of pure states, which is reflected in higher moments of the work. The proposed approach introduces a
fundamentally different perspective on quantum thermodynamics, allowing full thermodynamic characterization
of the dynamics of quantum systems, including the measurement process.
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I. INTRODUCTION

Landau said “All the concepts and quantities of thermody-
namics follow most naturally, simply and rigorously from the
concepts of statistical physics” [1]. While the second law of
thermodynamics puts limits on the work drawn from a system,
this work is most naturally viewed as the average over a statisti-
cal work distribution [2,3]. Classically, the work distribution is
constructed from the ensemble of system trajectories in phase
space. These trajectories specify the energy of the system at
all times, thus allowing the work done on the system to be
computed. In the quantum case the concept of fluctuating
work has proven elusive [4,5] because, in the conventional
view, trajectories in quantum mechanics are considered to
be impossible [6]. Trajectories in phase space can, however,
be constructed in an alternative formulation of quantum
mechanics [6–11] which makes predictions consistent with
experimental results. Here we utilize this approach to define
work and its distribution function for quantum systems.

Numerous definitions of quantum work have been proposed
[12–32], the most widely used being the two measurement pro-
tocol (TMP) definition for closed quantum systems [14,15,33].
The TMP leads to a quantum version of the Jarzynski equal-
ity [2,3,14,34] and the Tasaki-Crooks relation [14,35,36],
the classical correspondence has been elucidated [37], and
experimental implementation is relatively straightforward
[16,38–44]. The TMP has been extended to open systems
[45–49], to continuously measured processes [50,51], and to
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relativistic systems [52]. Other approaches include using a
power or work operator [4,12,13,22,53,54], measuring the
system by coupling it weakly to a detector [17], the full
counting statistics (FCS) approach [26–28], and work def-
initions based on entropic principles [19–21,55–58]. Work
definitions based on trajectories in Hilbert space include the
quantum jump approach [46,59,60] and the consistent histories
framework [25]. None of these approaches yields a positive
work distribution based on trajectories in phase space.

In this paper we provide a positive work distribution for
arbitrary statistical mixtures of wave functions in a manner
fully analogous to the classical work definition. Contrasting
with all previous studies of work in the quantum regime,
this work distribution is established using quantum Hamilton-
Jacobi theory which we briefly recall in Sec. II. In Sec. III we
show how the fluctuating work is defined for initial pure states,
i.e., wave functions, and derive the work distribution for closed
processes that begin in an initial statistical mixtures of wave
functions. We show that the average work of this distribution
always coincides with the change in the expectation value
of the internal energy, i.e., energy conservation is ensured.
The relation to the TMP work distribution and the use of
the Hamilton-Jacobi approach for finite-dimensional systems
are also discussed. In Sec. IV the Hamilton-Jacobi work
distribution is illustrated with an exactly solvable example,
a driven quantum harmonic oscillator. We conclude in Sec. V
that the work distribution based on Hamilton-Jacobi theory
provides a natural characterization of work and its fluctuations
in coherent quantum systems while recovering the classical
definition in the high-temperature limit. We highlight a number
of open questions that pertain to the Hamilton-Jacobi approach
to work in the quantum regime, such as initial entangled
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states and open dynamics. An important observation is that, in
general, the work distribution associated with closed quantum
dynamics will depend on the preparation of the initial mixture.

II. QUANTUM HAMILTON-JACOBI THEORY

Quantum mechanics can be formulated as a theory of
trajectories in phase space as shown by Bohm and others
[7–10,61,62]. Writing the wave function for a single particle in
polar form, ψ(x,t) = R(x,t) exp[iS(x,t)/h̄], where R � 0 is
the amplitude and S ∈ R is the phase of the wave function, and
x is the particle position, the Schrödinger equation reduces to
two coupled equations for R and S. The imaginary part gives
the continuity equation for the probability density R2. The real
part has the form of the Hamilton-Jacobi equation

∂S(ψ)(x,t)

∂t
+ E(ψ)(x,t) = 0, (1)

where

E(ψ)(x,t) = p(ψ)(x,t)2

2m
+ V (x,p(ψ)(x,t),t) + VQ

(ψ)(x,t).

(2)

Here m is the mass of the particle, V (x,p(ψ)(x,t),t) is the
external potential, and p(ψ)(x,t) ≡ ∇S(ψ)|(x,t). The above is
exactly the classical equation for the same problem but
with an additional term, the quantum potential VQ

(ψ) ≡
−h̄2(∇2R(ψ))/(2mR(ψ)). According to Hamilton-Jacobi the-
ory, E(ψ)(x,t) and p(ψ)(x,t) are the energy and canonical
momentum at point x and time t , respectively. To obtain
the trajectories we integrate Hamilton’s equation of motion
ẋt = ∂pH

(ψ)|(xt ,p(ψ)(xt ,t),t), where xt ≡ x(t) and H(ψ)(x,p,t) ≡
p2/(2m) + V (x,p,t) + V

(ψ)
Q (x,t).

For each wave function ψ(x,t), this gives an ensemble of
trajectories, namely one trajectory for each initial position
x0 of the particle; see Fig. 1 for an example. Experimen-
tally these particle trajectories have been reconstructed using
weak measurements [63–65]. The probability for being on
a trajectory with initial position x0 inside an infinitesimal

FIG. 1. Bohmian trajectories for a driven 1D harmonic oscillator;
see main text for details. The orange lines show three possible
trajectories of the particle all belonging to the ensemble for the
wave function ψ(x,t) that starts in the lowest-energy eigenstate. The
trajectories are specified by the particle’s initial position, x0. Also
shown is |ψ(x,t)|2 (gray surface); this represents the probability
density for finding the particle on each trajectory of the ensemble.
The energy of the particle at any point of the trajectory is E(ψ)(xt ,t).

volume dx0 is given by R2(x0,0)dx0 = |ψ(x0,0)|2dx0, i.e.,
the Born rule [10,66]. The continuity equation ensures that
the Born rule distribution of the trajectories is preserved in
time as |ψ(xt ,t)|2dxt = |ψ(x0,0)|2dx0, where dxt is the time-
evolved initial infinitesimal volume dx0. Note that whenever
the quantum potential can be neglected from the total energy,
the classical Hamiltonian and the corresponding equations of
motion are recovered.

III. WORK IN QUANTUM HAMILTON-JACOBI THEORY

A. Fluctuating work definition

For each wave function ψ(x,t) one can now define work
as power integrated along any trajectory xt just as in classical
mechanics; i.e., the work done on the system between time
zero and τ is [67]

W (ψ)[xt ] ≡
∫ τ

0
dt

∂H(ψ)

∂t

∣∣∣∣
xt

. (3)

Under unitary evolution Eq. (3) correctly reduces to the
energy difference between the end points of the trajectory
W (ψ)[xt ] = E(ψ)(xτ ,τ ) − E(ψ)(x0,0). For open dynamics, a
full integration over the trajectory would have to be performed,
using the total wave function, ψtot, of the system and degrees
of freedom to which it couples. If a system’s open dynamics
arises from it coupling to a large reservoir that has a well-
defined temperature, then the difference between the energy
change, E(ψtot )(xτ ,τ ) − E(ψtot )(x0,0), and the fluctuating work,
W (ψtot )[xt ], can be identified with “fluctuating heat” absorbed
by the system from the reservoir.

Given definition (3), the probability distribution for quan-
tum work when the system starts in an initial pure state ψ(x,0)
is simply

P (W ; ψ) =
∫

dx0|ψ(x0,0)|2δ(W − W (ψ)[xt ]). (4)

This is the work distribution assuming that the system is
initially described by a single wave function and undergoes
closed dynamics. We now discuss the case where the system
starts in a statistical mixture of pure states, {ψ (j )}, with
the index j taken to be discrete for simplicity. We refer to
statistical mixtures as those that have been prepared in a
statistical manner—i.e., with probability pj the pure state ψ (j )

was prepared. The probability distribution of work for this
statistical mixture is then given by

P{ψ (j )}(W ) =
∑

j

pjP (W ; ψ (j )). (5)

This is a positive probability distribution, i.e., P{ψ (j )}(W ) � 0
for all W and

∫
dW P{ψ (j )}(W ) = 1. It is important to note

that P{ψ (j )}(W ) depends explicitly on the mixture of wave
functions {ψ (j )}.

Our definition of P{ψ (j )}(W ) above means that two different
statistical mixtures will produce, in general, two different
probability distributions of work even when they correspond
to the same density operator, ρ̂. We give an explicit example
of the mixture dependence of the work probability distribution
below. If the system is initially entangled with other degrees
of freedom the reduced state of the system will be mixed
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but it does not correspond to a proper physical mixture of
pure states. The work distribution is then not given by (5) as
there is no unique set of mixing probabilities. In this case, the
full wave function ψtot describing the system and correlated
degrees of freedom is required and the work distribution is
given by P (W ; ψtot); see Eq. (4). For a discussion of the
distinction between statistical mixtures and density operators
see, for example, Refs. [4,68–70]. In this paper, we focus on the
case where the initial state of the system is a proper statistical
mixture of pure states.

B. Average work

For a statistical mixture ρ̂ of pure states, {ψ (j )} with
probabilities {pj }, the average work under unitary evolu-
tion can be obtained from the distribution (5) as 〈W 〉 ≡∫

dW P{ψ (j )}(W )W , explicitly,

〈W 〉{ψ (j )}

=
∑

j

pj

∫
dx0|ψ (j )(x0,0)|2[E(j )(xτ ,τ ) − E(j )(x0,0)]

=
∑

j

pj

∫
dx0|ψ (j )(x0,0)|2E(j )(xτ ,τ ) − 〈E(x,0)〉{ψ (j )}

=
∑

j

pj

∫
dxτ |ψ (j )(xτ ,τ )|2E(j )(xτ ,τ ) − 〈E(x,0)〉{ψ (j )}

= 〈E(x,τ )〉{ψ (j )} − 〈E(x,0)〉{ψ (j )}

= Tr[Ĥ (τ )ρ̂(τ )] − Tr[Ĥ (0)ρ̂(0)]. (6)

Here we have used the short-hand notation 〈E(x,t)〉{ψ (j )} ≡∑
j pj

∫
dxt |ψ (j )(xt ,t)|2E(j )(xt ,t) in lines 2–4 and the

equivariance property dx0|ψ (j )(x0,0)|2 = dxτ |ψ (j )(xτ ,τ )|2
in line 3. We have used the identity E(j )(x,t) ≡
Re{(Hψ (j ))(x,t)/ψ (j )(x,t)} in line 5 [10] and thus for
ρ̂(t) = ∑

j pj |ψ (j )(t)〉〈ψ (j )(t)| one obtains 〈E(x,t)〉{ψ (j )} =∑
j pj

∫
dx|ψ (j )(x,t)|2E(j )(x,t) = Tr[ρ̂(t)Ĥ (t)] at time t .

Thus, for a closed system, one always finds that 〈W 〉 is
equal to the change in the expectation value of the Hamilton
operator of the system, Ĥ (t), i.e., 〈W 〉 = Tr[Ĥ (τ ) Ûτ ρ̂ Û †

τ ] −
Tr[Ĥ (0) ρ̂], where ρ̂ is the density operator for the initial
statistical mixture and Ûτ is the evolution operator for the
time-interval τ . Note that because of the linearity of the
averages the choice of how the initial density operator ρ̂ was
mixed plays no role, i.e., for any set of pure states {ψ (j )} that
corresponds to the density matrix ρ̂ the same average work is
obtained. We highlight that, in general, this will not be the case
for higher moments of work, such as the average exponentiated
work (see below).

C. Measurements and the TMP

A measurement implies a coupling of the system to a
measuring device leading to open dynamics of the system
during the time interval of the measurement. In the Bohmian
formulation measurements can be explicitly included as part of
the continuous and deterministic dynamics of the system and
the measuring device [10,61]. The system still follows a trajec-
tory in phase space and so the work can again be computed as

integrated power along this trajectory. A general discussion of
the thermodynamics of measurements lies outside the scope
of this paper, but it is pertinent to understand how the work
definition (3) relates to the TMP definition. The protocol in
TMP includes two energy measurements of the system [33].
We now describe the TMP in the Hamilton-Jacobi picture and
then discuss circumstances in which the TMP work distribution
will coincide with that of Eq. (3).

The first energy measurement on an initial density operator
ρ̂ dynamically selects one of the eigenstates φ(n)(x,0) of the
Hamiltonian Ĥ (0) with eigenvalue E

(n)
0 . This happens in a

dynamical process [10,61] in which the measuring device
moves to give an outcome E

(n)
0 which is associated with a

system trajectory belonging to the ensemble of trajectories
of the wave function φ(n)(x,0). The probability for obtaining
outcome E

(n)
0 in this measurement is qn = 〈φ(n)| ρ̂ |φ(n)〉. The

negative time derivative of the phase of the wave function
φ(n)(x,t) at time t = 0 is E

(n)
0 . Hence the particle energy

E(φ(n))(x,0) in Eq. (1) after the first measurement is just the
energy eigenvalue E

(n)
0 , for any position of the particle. The

system now evolves according to the Hamiltonian Ĥ (t) such
that at time τ the wave function of the system is Ûτ φ(n)(x,0).

At this time another measurement of the energy is per-
formed. As for the first measurement, this second measurement
dynamically evolves the system to an eigenstate χ (m)(x,τ ) of
the Hamiltonian Ĥ (τ ) with eigenvalue E(m)

τ . The probability
of obtaining this outcome E(m)

τ , given the first outcome E
(n)
0 ,

is the conditional probability pm|n = |〈χ (m)|Ûτ |φ(n)〉|2. The
distribution Pρ̂(	E) for the change in energy outcomes is
given by Pρ̂(	E) = ∑

n qn P (	E; φ(n)) with P (	E; φ(n)) =∑
m pm|nδ(	E − (E(m)

τ − E
(n)
0 )). Since in TMP the energy

change is identified as work this is the TMP work distribution.
If we now consider the same protocol, but with work defined

as in Eq. (3), then the integrated power must be computed
along the entire system trajectory, including the time intervals
where the two measurements take place. Any work done on the
system during the two measurements will thus be included, in
contrast to TMP. Thus the work distribution based on (3) will in
general differ from the TMP work distribution Pρ̂(	E). This
difference arises due to the fact that during the measurements
the dynamics of the system is actually open, as has been pointed
out previously by Kammerlander et al., Solinas et al., and
Elouard et al. [20,60,71]. There are circumstances, however,
where the TMP work definition will agree with the trajectory
definition (3). For example, if the system is in a mixture of
energy eigenstates before each energy measurement, and if in
addition the measurements make a negligible contribution to
the work compared to the rest of the protocol, then the work
(3) will be equal to the difference in the energy outcomes, in
agreement with the TMP work definition.

D. Finite-dimensional systems

While we have here considered particles with continuous
variables, discrete systems, such as qubits, can also be treated
in the Hamilton-Jacobi approach [10,61,72]. For example, if
a qubit is physically realized by a spin-1/2 particle then one
sets up a spinor wave function and then extracts one overall
phase from it, which determines the ensemble of particle
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trajectories. If a qubit is taken as the lowest two energy levels
of a spinless particle, then the formulation described here,
using a scalar wave function, is sufficient. As an example,
suppose the qubit is realized as the two lowest levels of a
particle in a one-dimensional infinite-well potential of width
L [72]. The wave function of any given pure state of the
qubit is given by ψ(x,t) = c0(t)φ0(x) + c1(t)φ1(x), where
c0(t) and c1(t) are time-dependent complex-valued functions
and φ0(x) = √

2/L sin(πx/L) is the ground state and φ1(x) =√
2/L sin(2πx/L) is the exited state. The work associated

with any operation can then be calculated from Eq. (3). For
quantitative details of a spin-1/2 particle in the Hamilton-
Jacobi formulation, we refer the reader to the textbooks in
[10,61].

IV. EXAMPLE: DRIVEN QUANTUM OSCILLATOR

To illustrate the work distributions we here consider a
quantum harmonic oscillator of mass m and frequency ω with
external driving, described by the Hamiltonian

Ĥ (x̂,p̂,t) = p̂2

2m
+ 1

2
mω2x̂2 − x̂f1(t) − p̂f2(t), (7)

where the last two terms in Eq. (7) represent the external
driving, given by

f1(t) = −A sin(ωt), f2(t) = − A

mω
cos(ωt), (8)

where A is a real constant. The external driving is chosen such
that an exact solution for the time-evolution operator can be
found [73], which is given by

T̂ (t,0) = exp

{
At√

2h̄mω
[−â eiωt + â†e−iωt ]

}
e−iĤ0t/h̄, (9)

where Ĥ0 = h̄ω(â†â + 1
2 ) is the free-oscillator Hamiltonian.

The particle trajectories x(t) are given by the solution of

ẋ(t) = 1

m

∂

∂x
S(x,t) − f2(t), (10)

where we must solve for the time evolution of the wave function
to obtain the phase S(x,t). The energy eigenstates are most
easily found by rewriting Eq. (7) with Eq. (8) as

Ĥ (t) = h̄ω

(
b̂†b̂ + 1

2

)
− A2

2mω2
, (11)

with b̂ = â − α e−iωt and α = −iA/
√

2h̄mω3. In this form
it is easy to show that the eigenstates of Ĥ (t) at fixed t are
displaced number states, i.e., states obtained by acting with
the displacement operator on the energy eigenstates of the un-
driven oscillator (for details and literature on displaced number
states, see [74] for example). In our case the t = 0 energy
eigenstates are displaced number states |ñα〉 ≡ D̂(α)|n〉, where
|n〉 is the nth energy eigenstate of the undriven oscillator and
D̂(α) is the displacement operator. The energy eigenvalues of
Ĥ (t) are h̄ω(n + 1

2 − |α|2) at all times.

A. Initial thermal mixture of energy eigenstates

We consider first the case where the system is in an
energy eigenstate |ñα〉 at t = 0. Because of the explicit time

dependence in Eq. (7), the system does not remain in an
energy eigenstate. The time evolution operator (9) contains
the displacement operator and evolves the initial state |ñα〉
to eiA2t/(2h̄mω2)D̂(α + iωtα)|n〉, which is another displaced
number state but with t-dependent complex amplitude. The
evolved state is not an energy eigenstate (for t > 0). The phase
S(x,t) of the wave function for eiA2t/(2h̄mω2)D̂(α + iωtα)|n〉 is
straightforwardly obtained from the displaced number state
results [74] and takes the form

S(x,t) = − h̄ω

(
n + 1

2

)
t + A2t

2mω2

− A

ω
x[cos(ωt) + ωt sin(ωt)]

+ A2

4mω3

[
2ωt cos(2ωt) + (ω2t2 − 1) sin(2ωt)

]
.

(12)

The quantum trajectories of the particle are then found from
Eq. (10) to be

xn(t) = x0 + A

mω2
[ωt cos(ωt) − sin(ωt)], (13)

with x0 the initial position. Note that the set of trajectories is
the same for each initial energy eigenstate |ñα〉, i.e., Eq. (13) is
independent of n. The work along a trajectory calculated from
Eqs. (3), (12), and (13) is given by

W [xn(t)] = Aτ [Aτ + 2mx0ω cos(ωτ )]

2m
. (14)

We obtain the work distribution by taking into account the
probability of the particle following a trajectory (13) with
initial position x0. The probability distribution for the initial
position is given by |ψn(x0)|2, where ψn(x0) is the initial
wave function for the t = 0 energy eigenstate |ñα〉. The initial
position distribution is

|ψn(x0)|2 = 1

2n n!

√
mω

πh̄
exp

{
− mωx2

0

h̄

}[
Hn

(√
mω

h̄
x0

)]2

,

(15)

which is the same as that for the energy eigenstates of
the undriven oscillator (at t = 0 the probability density is
not displaced relative to the number state). The probability
distribution of work for the initial eigenstate (15) is then given
by Eq. (4).

We now consider an initial statistical mixture of energy
eigenstates at t = 0 with thermal probabilities,

pn = (1 − e−βh̄ω)e−nβh̄ω, (16)

for the eigenstate labeled by n with eigenvalue
h̄ω(n + 1

2 − |α|2). The associated density operator is the
thermal state at inverse temperature β = 1/(kBT ),

ρ̂β =
∞∑

n=0

pn|ñα〉〈ñα|. (17)

The work distribution for unitary evolution starting from this
statistical mixture is given by Eq. (5) using the weights in (16).
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Using Eqs. (14)–(16) we can now compute work averages. For
example, the average work is

〈W 〉{n} = (Aτ )2

2m
, (18)

which is the difference in the energy expectation values at
t = τ and t = 0, as expected. The average exponentiated work
is given by

〈e−βW 〉{n} = exp

{
− A2τ 2β

2m

×
[

1 − h̄ωβ

2
cos2(ωτ ) coth

(
h̄ωβ

2

)]}
. (19)

Before discussing this result in more detail in Sec. IV C, we
will first analyze the case of an initial thermal state when it is
prepared as a statistical mixture of coherent states.

B. Initial thermal mixture of coherent states

Above we constructed the initial thermal state as a mixture
of energy eigenstates, Eq. (17), and obtained the average
exponentiated work Eq. (19). However, the same initial density
operator can be written as a mixture of coherent states |η〉, i.e.,

ρ̂β =
∫

d2η pα(η)|η〉〈η|, (20)

where pα(η) is the P representation [75,76]. For the thermal
state of the harmonic oscillator one finds [75,76]

pα(η) = (eβh̄ω − 1)

π
exp{−|η − α|2[eβh̄ω − 1]}, (21)

where the Gaussian distribution has been shifted by α since
the initial Hamiltonian Ĥ (x̂,p̂,0) at time t = 0, see Eq. (7), is
displaced by D̂(α) with energy eigenstates |ñα〉. The different
initial mixture in Eq. (20) will give different quantum trajec-
tories for the particle compared to the mixture in Eq. (17),
even though both mixtures correspond to the same density
operator. To obtain the work distribution and work averages
for the coherent-state mixture we must find the trajectories for
an initial coherent state.

For the oscillator initially in a coherent state |η〉 with
complex amplitude η, with ηR (ηI ) the real (imaginary) part of
η, the state at t > 0 is found from Eq. (9) to be exp (i AtηI√

2h̄mω
)|υ〉,

where |υ〉 is a coherent state with time-dependent complex
amplitude υ = η + At√

2h̄mω
. The corresponding wave function

has the phase

S(x,t)

= −1

2
h̄ωt + h̄AtηI√

2h̄mω

− x[(At + ηR

√
2h̄mω) sin(ωt) − ηI

√
2h̄mω cos(ωt)]

− h̄

(
ηR + At√

2h̄mω

)
ηI cos(2ωt)

+ h̄

2

[(
ηR + At√

2h̄mω

)2

− [ηI ]2

]
sin(2ωt). (22)

This phase gives the particle trajectories

xη(t) =x0 − ηR

√
2h̄

mω
+

(
At

mω
+ ηR

√
2h̄

mω

)
cos(ωt)

+ ηI

√
2h̄

mω
sin(ωt). (23)

For this initial wave function the work done on the oscillator
between t = 0 and t = τ is given by

W [xη(t)] =Aτ

[
Aτ

2m
+

√
2h̄ω

m
ηR

]
+ {A[ωτ cos(ωτ )

+ sin(ωτ )] +
√

2h̄mω3[ηR( cos(ωτ ) − 1)

+ ηI sin(ωτ )]}
[
x0 − ηR

√
2h̄

mω

]
. (24)

The probability distribution for the initial position x0 is given
by |ψη(x0)|2, whereψη(x0) is the wave function for the coherent
state |η〉 at t = 0:

|ψη(x0)|2 =
√

mω

πh̄
exp

{
− mω

h̄

[
x0 − ηR

√
2h̄

mω

]2}
. (25)

The work distribution for the initial coherent state |η〉 is now
determined by Eq. (4) with ψη(x0) as the initial state.

The work distribution arising for an initial thermal state ρ̂β

when it was prepared as a mixture of coherent states, Eq. (20),
is given by

P (W ){η} =
∫

d2η pα(η)P (W ; ψη), (26)

with pα(η) given by Eq. (21). Work averages for this mixture
can now be evaluated with Eqs. (21), (24), and (25).

C. Comparison of work averages for two thermal state mixtures

The average work for the initial coherent-state mixture
is 〈W 〉{η} = (Aτ )2/(2m), which agrees with Eq. (18), as ex-
pected. However, when calculating the average exponentiated
work 〈e−βW 〉{η} one finds that it differs from the one obtained
for an initial energy-state mixture in (19). In fact, the quantity
〈e−βW 〉{η} can diverge for certain values of the parameters, in
contrast to the result for 〈e−βW 〉{n}. But at high temperature
〈e−βW 〉{η} always converges and to leading order in β it is
given by

〈e−βW 〉{η} = 1 + βh̄ω sin2

(
ωτ

2

)
+ O(β2), (27)

whereas the high-temperature limit of Eq. (19) is

〈e−βW 〉{n} = 1 − β(Aτ )2

2m
sin2(ωτ ) + O(β2). (28)

Note that to first order in β, 〈e−βW 〉{η} is independent of the
driving (A), whereas 〈e−βW 〉{n} is not. The dependence on the
driving in the high-temperature expansion of 〈e−βW 〉{η} only
appears at third order in β. The fact that moments of the
work for a coherent-state mixture can be nonzero even without
driving follows from the properties of the coherent state in
the Hamilton-Jacobi formulation [10]. Although the average
over all trajectories of the energy change of the particle in a
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pure (undriven) coherent state is zero, the energy change along
individual trajectories is not zero in general, due to the quantum
potential [10]. This means that higher moments of the energy
change do not have to vanish.

For the time-dependent Hamiltonian (11) the partition
function associated with the thermal states is the same at any
time and thus the classical Jarzynski equality is 〈e−βW 〉 = 1.
This is correctly obtained for both statistical mixtures, Eq. (28)
and Eq. (27), in the high-temperature limit of β → 0, which
is the relevant classical limit here. We note that there is no
a priori reason why the mathematical limit h̄ → 0 should
give the classical physical result here. Indeed, assuming no
contributions arising from higher orders of β, for the coherent-
state mixture, Eq. (27), the limit h̄ → 0 happens to coincide
with the classical value of 1. But for the energy-state mixture,
Eq. (28), the h̄ → 0 limit does not give 1, unless one substitutes
the coupling constant A as A2 = 2m α2

I (h̄ω)ω2, where αI is
the imaginary part of the displacement parameter α.

Expressions (27) and (28) show that in general there is
no relation between the average exponentiated work 〈e−βW 〉
and equilibrium quantities, such as 	F , in the quantum case.
This arises because each wave function already contributes
an ensemble of trajectories to the work distribution in Eq. (4)
and such ensembles are not related to Boltzmann distributions
in any direct manner. Only the mixing over different wave
functions can introduce thermal weights, and the resulting
phase-space distribution ρ(x,p,t) = ∑

j pj |ψ (j )(x,t)|2δ(p −
∇Sψ (j )

(x,t)) is thus in general not of Boltzmann form, even
if the mixture of {ψ (j )} corresponds to a thermal state ρ̂β .

V. CONCLUSION AND DISCUSSION

Quantum mechanics is routinely taught in a way that
stresses subjectivity and indeterminism, while abolishing tra-
jectories in phase space. As Bell pointed out, this is a “delib-
erate theoretical choice” that is “not forced on us by experi-
mental facts” [6]. Using quantum Hamilton-Jacobi theory we
have here generalized the classical definition of work to the
quantum case in a straightforward manner. We have provided
a positive-definite probability distribution characterizing the
work fluctuations in complete generality, including for co-
herent quantum systems. The distribution gives the average
work as the change of energy expectation values for closed
systems while recovering the classical result in the presence
of classical dynamics. While this may appear in contradiction
with a recently proven “no-go” theorem [77], note that the
work distribution (5) is not linear in the density operator of the
system. Thus it is not of the form considered in Ref. [77] and
the theorem does not exclude this case.

In contrast to proposals based on trajectories in Hilbert
space, such as the quantum jump approach [16,46,47,59,60],
consistent histories framework [25], or continuous measure-
ments [17,23], the Hamilton-Jacobi approach is based on
trajectories in phase space where the system has a well-defined
energy at all times. These trajectories have been reconstructed
using weak measurements [63–65], from which the distribution
(5) can be inferred.

We here focused on initial statistical mixtures undergoing
closed dynamics—but the work distribution defined in (5)

extends naturally to correlated and open systems. Instead of
using the wave function of the system alone, the open case
requires the use of the wave function ψtot of the system and
any correlated or interacting degrees of freedom. The dynamics
of the full system would have to be solved and the power
integrated along the phase-space trajectory of the subsystem
of interest.

Measurements are a particular example of open dynamics,
where the full system consists of the measured system plus
the measuring device. The Hamilton-Jacobi approach thus
has the ability to explicitly quantify the work done during a
measurement. Furthermore, it can be applied to initial states
with coherences in the energy basis, whether or not mea-
surements are performed. The removal of initial coherences
through certain open processes has been found to allow work
extraction [20]. This extracted work could be compared to the
average work obtained from the work distribution (5). More
generally, it will be interesting to investigate how much work
is done on the system when energy or other observables are
measured.

We note that, as a general feature of the Hamilton-Jacobi
formulation [10,61], the predictions for measurement out-
comes derived from the Hamilton-Jacobi approach will agree
with those of standard quantum mechanics. This includes
standard tools of quantum mechanics, such as positive valued
operator measurements (POVMs). Our work distribution is not
associated with a POVM. This explains why here statistical
mixtures rather than density operators determine the work
distribution, in contrast to previous work definitions. The
broader perspective taken here offers insights into current
challenges in quantum thermodynamics by indicating that
the statistical mixture may play a bigger role than usually
anticipated. It will be interesting to explore implications of this
feature on interpretational aspects of quantum theory [78,79].

As demonstrated in the harmonic-oscillator example, the
average exponentiated work in the quantum case is not in gen-
eral related to equilibrium properties such as the free-energy
change of the system. This difference from classical statistical
physics occurs because the quantum thermal phase-space
distribution is not of Boltzmann form and there is an explicit
dependence on the statistical mixture. Future investigations can
explore how fluctuation relations can be generalized within the
quantum Hamilton-Jacobi theory.

In the Hamilton-Jacobi approach the classical limit is
transparent as it occurs whenever the quantum potential can
be neglected in (2). The classical equations of motion and
corresponding trajectories are then recovered. In some cases
the high-temperature limit may also give classical results and
we showed that, for the specific harmonic-oscillator example,
the classical Jarzynski equality is recovered in this limit. An
open problem is to find the general conditions under which
high temperature gives classical statistical results.

Many questions remain open in the field of quantum
thermodynamics. The approach introduced here shows that
they are firmly located in the realm of the “speakable” [6].
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