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Landauer’s principle in the quantum regime
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We demonstrate the validity of Landauer’s erasure principle in the strong coupling quantum regime by treating
the system-reservoir interaction in a thermodynamic way. We show that the initial coupling to the reservoir
modifies both the energy and the entropy of the system, and provide explicit expressions for the latter for a
damped quantum harmonic oscillator. These contributions are related to the Hamiltonian of mean force and
dominate in the strong damping limit. They need therefore to be fully taken into account in any low temperature
thermodynamic analysis of quantum systems.
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Information erasure is necessarily a dissipative process.
According to Landauer’s principle [1], erasure of one bit of
information requires a minimum dissipation of heat of kT ln 2,
where T is the temperature and k the Boltzmann constant.
As a result, the entropy of the environment increases by at
least k ln 2. The erasure principle establishes a fundamental
relationship between information theory and thermodynamics.
As such, it has played a pivotal role in the resolution of
Maxwell’s demon paradox [2]. The Landauer principle has
been shown to hold for classical systems in the limit of strong
[1] and weak [3,4] interaction with the external reservoir, as
well as for weakly damped quantum systems [4]. However, its
validity has recently been challenged in the strongly coupled
quantum regime [5–8]. It has been claimed that in the latter the
Clausius inequality for the von Neumann entropy, Q � kT �S,
may break down due to entanglement of system and reservoir
at very low temperatures. This implies that information may
be erased, that is, entropy (S) decreased, while heat (Q) is
absorbed [9,10], in clear opposition to the Landauer principle.
This supposed violation has been reported in a growing number
of recent books [11–13] and reviews [14]. Meanwhile, several
key results of quantum information theory have been derived
with the help of the erasure principle. Important examples
include the Holevo bound on accessible information [15], the
no-cloning theorem [16], and the upper bound on the efficiency
of entanglement distillation [17]. A failure of Landauer’s
erasure principle deep in the quantum domain would therefore
have far-reaching consequences.

In this Rapid Communication, we resolve this quantum
conundrum and show that the Landauer principle does hold in
the strongly coupled quantum regime. We therefore establish
the validity of the erasure principle in classical and quantum
physics, for arbitrary reservoir interaction strengths.

The Clausius inequality asserts that, for a system initially
in a Gibbs state, the change of entropy is always larger
than or equal to the amount of heat received by the system
divided by the temperature [18]; it is regarded as a general
formulation of the second law of thermodynamics. Starting
from a microscopic model for a strongly damped harmonic
oscillator [see Eq. (1) below], it has been shown that the
Clausius inequality is apparently violated at low temperatures
during a quasistatic variation of the mass of the oscillator
[5–10]. In order to understand this discrepancy, it is useful

to keep in mind that standard thermodynamics assumes that
the system-reservoir coupling is negligibly small [18]. In this
limit, the damped quantum system asymptotically relaxes to
the correct thermal Gibbs state [19]. By contrast, for any finite
interaction strength, the stationary state of the system is not
of the Gibbs form because of the noncommutation of position
and momentum [20]. Deviations from thermodynamics are
therefore to be expected. It has, for instance, been observed
that, at zero temperature, the oscillator is in an excited, mixed
state and not in its pure ground state [20–22]. In the following,
we resolve this paradoxical situation by considering, unlike in
Refs. [5–10], the combined effect of the mass variation and of
the coupling to the reservoir. By treating the initial coupling
as a proper thermodynamic transformation, we explicitly
show that it modifies both the energy and the entropy (i.e.,
information content) of the oscillator. In the limit of strong
coupling, these contributions dominate those stemming from
the variation of the mass. By considering the combined state
transformation, we are able to demonstrate the general validity
of the Clausius inequality for the von Neumann entropy, and
hence of the Landauer principle.

Microscopic system-reservoir model. Following Refs. [5–
10], we base our study of the Clausius inequality in the
quantum domain on the standard model for quantum dissipa-
tion [23]. The latter consists of a harmonic oscillator linearly
coupled to a bath of harmonic oscillators,

H = HS +
N∑

j=1

[
p2

j

2mj

+ mjω
2
j

2

(
xj − Cjq

mjω
2
j

)2]
, (1)

where the Cj ’s are coupling constants. The Hamiltonian of
the system is HS = p2/(2M) + Mω2q2/2 with the usual
notation. The frequencies of the reservoir modes and their
coupling to the system are characterized by the Ohmic spectral
density function, J (ν) = (π/2)

∑
j C2

j /(mjωj )δ(ν − ωj ) =
ηνω2

D/(ν2 + ω2
D), with damping coefficient η and Debye

cutoff frequency ωD [23]. Examples of damped oscillators
are nanomechanical resonators that have been very recently
cooled to the ground state [24]. They have been shown to
be mass sensors of unprecedented sensitivity (10−24 kg and
smaller) [25], enabling them to detect the tiny mass changes
induced by single protein molecules attaching to them [26].
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Let us assume that the system and the reservoir are initially
decoupled and each is in equilibrium at temperature T . When
the coupling is quasistatically increased, the combined system
equilibrates to the Gibbs state ρ = exp(−βH )/Tr exp(−βH ).
The reduced stationary phase space distribution of the oscilla-
tor is, however, non-Gibbsian: For the Ohmic model (1), it is
given by a Gaussian with position and momentum dispersions
[27],

〈q2〉(η,M) = h̄

Mπ
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[
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(
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)
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+M2ω2〈q2〉(η,M). (3)

The parameters λi(η,M) are the characteristic frequencies
of the damped oscillator and ψ denotes the digamma func-
tion. In the limit of large cutoff frequency, ωD � η/M,ω,
λ1,2(η,M) � η/(2M) ± ζ , with ζ = [η2/(4M2) − ω2]1/2 and
λ3(η,M) = ωD − η/M [27]. To facilitate the discussion, we
have here explicitly indicated the dependence on the coupling
constant η and on the mass M . For finite coupling (η > 0),
system and reservoir are correlated, the variances are squeezed,
Mω2〈q2〉(η,M) < 〈p2〉(η,M)/M , and the reduced stationary
state is thus non-Gibbsian. For an uncoupled oscillator (η =
0), Eqs. (2) and (3) reduce to their thermodynamic ex-
pressions, 〈q2〉(0,M) = h̄/(2Mω) coth(βh̄ω/2), 〈p2〉(0,M) =
h̄Mω/2 coth(βh̄ω/2), equipartition therefore holds, and the
reduced state is of the Gibbs form.

The paradox. Suppose the coupled oscillator undergoes a
quasistatic mass variation from M0 to M1, as discussed in
Refs. [5–10]; think of single molecules getting attached to a
nanomechanical oscillator. We define the internal energy of
the system as the stationary expectation value of its energy,
U = 〈HS〉 = TrS[ρSHS] = 〈p2〉/(2M) + Mω2〈q〉2/2, where
ρS = TrBρ is the reduced density operator of the oscillator. For
an infinitesimal mass change dM , the oscillator exchanges an
amount of heat with the external reservoir given by δQ(M) =
TrS[dρSHS]. As a result [5–10],

Q(M) =
∫ M1

M0

(
1

2M

∂〈p2〉
∂M

+ Mω2

2

∂〈q2〉
∂M

)
dM. (4)

At the same time, the von Neumann entropy of the quantum
oscillator changes by �S(M) = S(η,M1) − S(η,M0), where
S = −TrρS ln ρS can be expressed as [5–10]

S = (
v + 1
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)
ln

(
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2

) − (
v − 1

2

)
ln

(
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2

)
. (5)

Here v = v(η,M) =
√

〈q2〉〈p2〉/h̄ denotes the phase space
volume. The temperature dependence of �(M) = Q(M) −
kT �S(M) is shown in Fig. 1. We observe that �(M) is
positive at very low temperatures, in apparent violation of the
Clausius inequality which would require that �(M) � 0 when
�M = M1 − M0 � 0.

Analytic expressions for Q(M) and �S(M) (and hence �(M))
can be derived close to zero temperature. A lowest order
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FIG. 1. (Color online) Temperature dependence of the quantities
�(M) = Q(M) − kT �S(M) (blue solid line) for the mass variation
alone and � = Q − kT �S (red dashed line) for the combined
transformation mass variation plus initial coupling. The former is
positive, indicating an apparent violation of the Clausius inequality,
while there is no violation for the combined transformation. The inset
shows a comparison between the exact � (red dashed line) and its
low temperature approximation [Eq. (13)] (red solid line). Parameters
are ω = 1.2, M0 = 1.1, M1 = 1.11, η = 40ω, ωD = 1000η, and
h̄ = k = 1.

expansion of the variances (2) and (3) in the strong coupling
limit ωD � η/M � ω yields [23,27]

〈q2〉(η,M) = 2h̄

πη
ln

η

Mω
+ πη

3h̄M2ω4
(kT )2 + O(T 3), (6)

〈p2〉(η,M) = h̄η

π
ln

ωDM

η
+ O(T 3). (7)

With the help of the above expressions, we obtain

Q(M) = (b0 − b1)
h̄ω

2π

[
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(9)

where we have defined the dimensionless parameters, a =
βh̄ω/2, bi = η/(Miω), and ci = MiωD/η. In the low temper-
ature, strong coupling regime, Q(M) is always positive, that
is, heat is absorbed by the system, while information can be
erased, �S(M) < 0.

Resolution of the paradox. A key observation is that the
Clausius inequality presupposes an initial Gibbs state [18]. We
here resolve the paradox by treating the initial coupling as a
thermodynamic transformation. By generalizing the method
of adiabatic switching, well-known in chemistry [28], we
evaluate entropy and heat resulting from the coupling of
the isolated oscillator to the reservoir. The initial state of
the system is now Gibbsian, in contrast to the previous case.
When the coupling coefficient is quasistatically increased from
0 to η, the internal energy changes by �U (C) = U (η,M0) −
U (0,M0). The corresponding heat can be determined via the
first law, Q(C) = �U (C) − W (C), noting that the work required
to couple the oscillator is given by the free energy difference
W (C) = �F (C) = F (η,M0) − F (0,M0) [22]. The latter can
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be evaluated using the general form of the free energy of a
quantum damped oscillator [23,27],

βF = ln �

(
βh̄ωD

2π

)
−

3∑
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(
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4π2

)
,

(10)

where � denotes the Euler � function. In the absence
of coupling (η = 0), Eq. (10) reduces to F (0,M0) =
1/β ln[2 sinh(βh̄ω/2)]. In the low temperature, strongly
damped limit, we find that Q(C) < 0, indicating that heat is
dissipated into the environment:

Q(C) = −h̄ωb0

2π

[
1 − π2

6a2

]
. (11)

The approximate, low temperature entropy change, �S(C) =
S(η,M0) − S(0,M0), can be computed in a similar way as
before and reads

�S(C) = 1 + 1

2

[
ln

2

π2
+ ln ln c0 + ln ln b0 + π2b2

0

24a2 ln b0

]
.

(12)

It is worth noticing that, contrary to the case of the mass
variation [Eq. (9)], the entropy change induced by the coupling
to the reservoir is here positive, �S(C) > 0.

We next consider the combined state transformation that
consists of the initial coupling to the reservoir followed
by the variation of the mass. We accordingly define the
total entropy change �S = �S(M) + �S(C) and the total
heat Q = Q(M) + Q(C). We again introduce a quantity � =
Q − kT �S = �(M) + �(C) which, using Eqs. (8), (9) and
(11), (12), we can write as

� = −h̄ω

2a
− h̄ωb1

2π

×
{

1 + π

b12a

[
ln

2

π2
+ ln ln c1 + ln ln b1

]
− π2

6a2

}
.

(13)

In the limit of large a, b, and c, this expression is always
negative (see also Fig. 1). Thus, no violation of the Clausius
inequality occurs in the low temperature, strong coupling
regime, in agreement with standard thermodynamics. We can
now understand the apparent violation found in Refs. [5–10]
by comparing the change of entropy and heat during the two
state transformations (see Fig. 2). The low temperature mass
variation is characterized by a negative entropy change and
a positive heat, �S(M) < 0, Q(M) > 0, which together lead
to the breakdown of the Clausius inequality. On the other
hand, the situation is exactly opposite for the initial reservoir
coupling where �S(C) > 0 and Q(C) < 0. Figure 2 shows that
in the limit of strong coupling, the latter contributions are much
larger than those coming from the mass variation. They can
therefore not be neglected as done so far in Refs. [5–10].

Deeper insight into the foregoing discussion can be gained
by using the concept of Hamiltonian of mean force. We express

T

100 Q(M)

ΔS(C)

500 ΔS(M)

Q(C)

20 40 60 80 100 120 140

4

2

2

4

FIG. 2. (Color online) Entropy and heat during the initial qua-
sistatic coupling to the reservoir, �S(C) (red dotted line) and Q(C)

(lower red solid line), and during a quasistatic mass variation, �S(M)

(blue dashed line) and Q(M) (upper blue solid line), as a function of
temperature. Changes for the initial coupling have opposite signs and
much larger amplitudes than those for the mass variation. Parameters
are the same as in Fig. 1.

the reduced density operator of the system in the form ρS =
exp[−β(H ∗

S − F )], where [29]

H ∗
S = − 1

β
ln

TrB exp(−βH )

TrB exp(−βHB )
(14)

is the quantum Hamiltonian of mean force and F =
−1/β ln TrS exp(−βH ∗

S ) the free energy of the system. The
quantity �HS = H ∗

S − HS vanishes for vanishing reservoir
coupling and thus quantifies the deviation from a Gibbs state.
It is simply related to the initial thermodynamic change of
the system. We first note that the von Neumann entropy of
the system is given by S = β(U − F + 〈�HS〉). The heat
exchanged with the reservoir during the initial coupling is
then Q(C) = kT �S(C) − 〈�HS〉 or, in other words, �(C) =
−〈�HS〉. We therefore find that � = �(M) − 〈�HS〉. This
result, valid for any quantum dissipative system, shows that
the difference between the combined state transformation and
the mass variation alone is just the difference between the
Hamiltonian of mean force and the bare Hamiltonian of the
system. It is worth stressing that for the quantum harmonic
oscillator, 〈�HS〉 is a function of the variances (2) and (3) of
the reduced stationary state and can therefore be determined
experimentally.

The following physical picture thus emerges from our
analysis: In the limit of vanishing system-reservoir coupling,
the stationary state of the system is Gibbsian and the ther-
modynamic cost of the coupling to the reservoir is negligible,
� = �(M). In the opposite limit of strong coupling, the sta-
tionary state becomes non-Gibbsian, but the thermodynamic
contributions of the initial coupling are important and hence
need to be fully included, � = �(M) − 〈�HS〉. In both cases,
as we have just proved, the ordinary Clausius inequality � � 0
holds. We note that the Clausius inequality reduces to an
equality when the system is in a Gibbs state at all times [18]:
Even for quasistatic transformations, this is only achieved
in the high temperature, weak coupling limit (see Fig. 1).
An effective Clausius inequality has lately been derived by
introducing an effective mass and spring constant for the
oscillator, as well as an effective temperature, which differs
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from that of the reservoir [30]; the latter is at variance with the
zeroth law.

Landauer’s principle. Let us finally derive the Landauer
bound from the quantum Clausius inequality. We consider an
isolated system with two stable states that are used to encode
one bit of information (e.g., a symmetric double-well potential
with high energy barrier). The system is initially in equilibrium
at temperature T and the two states are occupied with equal
probability. We reset the memory by first coupling it to the
reservoir and then modulating the potential in order to bring
the system with probability one into one of its states [2]. The
von Neumann entropy of the system is hence ln 2 before the
coupling to the reservoir and zero after complete erasure. From
the Clausius inequality, we then find that the dissipated heat
obeys Qdis = −Q � −kT �S = kT ln 2. This is Landauer’s
erasure principle.

Conclusion. Our findings emphasize the crucial role
of system-reservoir interactions in the thermodynamic

description of quantum systems; a low temperature investi-
gation can therefore only be consistent if they are fully taken
into account. We have derived detailed expressions for the
change of entropy and heat induced by a quasistatic coupling
to the reservoir. We have further shown that their relative
contributions grow with increasing interaction strength and
even dominate in the strong coupling limit, thus safeguarding
the validity of Clausius’ inequality. In contrast to other
approaches [31], we have here used standard thermodynamic
definitions of heat and work. Contrary to previous claims that
quantum correlations undermine Landauer’s erasure principle,
we have demonstrated that the principle does hold when the
generation of these correlations is properly included.
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